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Abstract. We will attach a scalar invariant to a tetrahedron whose edges are labelled by

irreducible representations of a ternary orthogonal group SO3 over a local field. This

generalizes the 6j symbol whose theory was developed by Racah, Wigner, and Regge.

We give several formulas for this invariant, including in terms of hypergeometric-type

integrals and functions, and show that it admits a symmetry by the the 23040-element Weyl

group of Spin12. We then interpret these results in terms of relative Langlands duality,

where the dual story comes from the action of Spin12 on a 16-dimensional cone of spinors.
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Figure 1. A tetrahedron with labeled edges

1. Introduction

The 6j symbol

{
j1 j2 j3
j4 j5 j6

}
is an invariant attached to a tetrahedron T with integral side

lengths ji, where the upper and lower rows index opposite edges (as in Figure 1). In truth,

each j is indexing the irreducible (2j+ 1)-dimensional representation Vj of the Euclidean

rotation group SO3.
1

The origin of the 6j symbol lies in the work of Racah and Wigner on

addition theorems for (quantum) angular momentum. The theory was further developed

by Regge, who discovered the extraordinary “Regge symmetries” [Reg59] of 6j symbols,

and from these deduced new geometric symmetries of tetrahedra [PR69, Rob99]. Since

then, the 6j symbol has resurfaced in special function theory, topology and number theory

(see § 9 for some references). We will review the classical definition, and then proceed to

discuss in more detail what we do in this paper.

1.1. The classical definition.
. . . I hardly ever take up Dr. Frankland’s exceedingly valuable “Notes for Chemical
Students,” which are drawn up exclusively on the basis of Kekulé’s exquisite con-
ception of valence, without deriving suggestions for new researches in the theory of
algebraical forms. — James Joseph Sylvester, “Chemistry and Algebra.”

These words of Sylvester relate to a graphical calculus for invariant theory. The defini-

tion of the 6j symbol is animated by the same spirit; were some strange beast, whose only

language was the invariant theory of binary forms, to be confronted with the idea of a

tetrahedron, we think it would surely rediscover the definition that follows.

We can realize the irreducible representationVj of SO3 of dimension 2j+1by considering

the space of homogeneous polynomials of degree j in three variables x, y, z, and restricting

1
In fact, the 6j symbol is defined for half-integral j, which correspond to representations of the double

cover SU2 of SO3. For the purposes of this paper, however, restricting to integral jgives a simpler presentation

of the theory. This is inessential; see § 9.4 and § 9.5.3 for further discussion.
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them to the sphere x2 + y2 + z2 = 1. In what follows, it is more convenient to consider

only real polynomials. By integrating over the sphere we get a rotation-invariant inner

product on Vj.

Now, a classical theorem of invariant theory asserts that the triple product

Va ⊗ Vb ⊗ Vc

admits a nonzero SO3-invariant vector if and only if a, b and c satisfy the triangle inequal-

ity, i.e. form the sides of a Euclidean triangle. When this happens, the invariant vector

is unique up to scaling, and can be explicitly described, with reference to the model just

discussed, as the dual of the functional

(v1, v2, v3) 7−→
∫
S2
v1v2v3.

If a triangle with integer side lengths, then, indexes an invariant vector, what can

we extract from a tetrahedron T of integer sides? When j, j ′, j ′′ correspond to the side

lengths of a face of T, we can distinguish an invariant vector inside Vj ⊗ Vj ′ ⊗ Vj ′′ , which

we normalize to have length 1; by working inside the real form, this distinguishes the

invariant vector up to sign. Tensoring these vectors together for all four faces, we arrive at

a vector inside

Vj1 ⊗ Vj1 ⊗ Vj2 ⊗ Vj2 ⊗ . . . Vj6 ⊗ Vj6

and contract, using the inner product on each Ve. We arrive at a real-valued invariant;

this is, up to sign, the classical 6j symbol.

1.2. What we do in this paper, and why. Our goal is to set up and study the definitions

above in a broader context.

1.2.1. What? First of all, we will allow SO3 to mean the automorphisms of any nondegen-

erate ternary quadratic form; thus, for example, we allow also x2+y2−z2, which results in

a noncompact group SO2,1(ℝ).2 The result of this substitution is that the j-parameters now

can vary continuously; informally, the input may be either a Euclidean or a Lorentzian

tetrahedron.

Secondly, and perhaps more disorienting to the reader familiar with the classical defi-

nition, we will allow the real numbers to be replaced by any local field F, for example, the

complex numbers or the p-adic numbers. Informally speaking, this further enlarges the

domain of permissible j-parameters.

We propose to rename the symbol, in this context at least, the “tetrahedral symbol,”

which seems more evocative than the traditional name, and, at least, does no further

injustice to the pioneers.

2
This group may be more familiar in its isomorphic realization the group PGL2(ℝ) of projective linear

transformations of the plane.
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1.2.2. Why? It seems to us that, in this more general context, the theory both becomes

richer in its own right, and also acquires interesting new connections to other areas of

mathematics. Thus, for example:

(a) As alluded to above, the 6j symbol possesses an unexpectedly large symmetry

group — by a group of order 144, isomorphic toS4×S3 (whereSn is the symmetric

group of degree n). In the general context, the tetrahedral symbol will acquire

symmetry under a much larger group of order 23040, which is isomorphic to the

the Weyl group of Spin12.

(b) The tetrahedral symbol in the general context possesses a variety of novel and

beautiful integral representations, some of which seem to us much simpler than

any integral representation for the original 6j symbol.

(c) When F is a local field, and the representations in question are unramified, it be-

comes possible to evaluate explicitly the tetrahedral symbol in terms of the geometry

of a certain remarkable spinor cone on which the group Spin12 acts. In this way,

we see the spin group itself, rather than only the Weyl group that was manifested

in (a).

(d) The setting in which we develop the theory — namely, the representation of real

and p-adic groups — is also the setting of the theory of automorphic forms and

the Langlands program. As we will see, the tetrahedral symbol has already played

an interesting unacknowledged role in the former theory — as the kernel under-

lying certain “spectral reciprocity” formulae; and we will offer various proposals

concerning its broader role in the Langlands program.

1.2.3. Connection to existing work. The idea of generalizing the 6j symbol to the cases of

F = ℝ or F = ℂ is not a new one. Indeed, the analogues of 6j symbols have been studied for

the groups SL2(ℝ) and SL2(ℂ) by several authors, both in the context of special function

theory, and of mathematical physics. Among other things, these works define versions of

the 6j symbols and give a number of formulas of hypergeometric type, closely related to

our § 7 in the case F = ℝ or ℂ.

We discuss these papers in a little more detail in § 9.4. Broadly speaking, the main

point of overlap is point (b) from § 1.2.2. However, our approach to the theory also has

a somewhat different emphasis, in that we have sought to give a presentation separating

abstract aspects from computational aspects. Thus our definition of the symbol is some-

what different to prior work; it uses no explicit formulas and is manifestly invariant by

tetrahedral symmetries. This simplicity comes at a price — more effort is needed to get to

explicit formulas.

1.3. A summary of the paper. To try to bring out the beauty of the subject matter, we have

to some extent separated statements from proofs; in the first part of the paper, the reader

will find statements of the theorems, but some proofs are only sketched, with details given

in the second part. We summarize briefly the contents of this first part.

• In § 3 we give a more precise version of the discussion above, and explain how

to extend it to the case of general SO3. In this general context, the Vis become
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infinite-dimensional; nonetheless, there is a simple rearrangement of the definition

that avoids analytic difficulty.

• In § 4 we set up various notation that connect tetrahedral geometry to the geometry

of the root system D6 and the associated group Spin12.

• In § 5 we formulate the main theorems:

– Theorem 5.1.1 proves that the tetrahedral symbol, for principal series, enjoys

aW(D6)-symmetry;

– Theorem 5.2.1 evaluates the tetrahedral symbol, in the unramified case, in

terms of the geometry of a spinor cone.

• In § 6 we give several formulas of geometric nature for the tetrahedral symbol,

in particular Proposition 6.1.1 as an integral of characters, Proposition 6.2.1 as an

integral of spherical functions, and Proposition 6.3.1 as an integral over moduli

of six points on ℙ1. We regard these formulas as having intrinsic interest, besides

their usage to prove the theorems of § 5; the same comment goes for the next section

too.

• In § 7 we give hypergeometric formulas for the tetrahedral symbol, in particular

Theorem 7.2.1. In the case F = ℝ we will express the result as a sum of 4F3
hypergeometric series evaluated at 1.

• In § 8 we explain how the study of the tetrahedral symbol, and in particular our

theorem computing it in terms of a spinor cone, fits into the story of relative

Langlands duality.

• In § 9 we rather briefly discuss a number of interesting topics: the unitary inte-

gral transform defined by the tetrahedral symbol and its role in number theory;

difference equations; and corresponding questions in geometrical representation

theory.

1.4. Acknowledgements. The first-named author (A.V.) would like to thank Andre Reznikov,

for two decades of inspiration and friendship, which included many conversations around

the present subject matter; in particular, it was Reznikov’s encouragement that led us to

really look carefully at the definition of the 6j symbol.

The second-named author (X.G.W.) would like to thank Minh-Tam Trinh for many

spontaneous discussions; and his relentless pursuit of creativity in math has always been

inspirational throughout the years.

Both of us thank Danii Rudenko for interesting discussions during his visit to IAS. We

would also like to thank Tulio Regge for inspiration.

2. Review of harmonic analysis on a local field

The reader should skip this section and refer to it as needed.
Recall that a local field is a field that is equipped with a multiplicative absolute value

| · |, where we require | · | to satisfy the triangle inequality and induce a locally compact
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topology.
3

Such a field is isomorphic to either the real numbers, the complex numbers, a

finite extension of the p-adic numbers, or a finite extension of the field of Laurent series

over a finite field.

To facilitate the discussions throughout the paper, it is necessary to introduce some

common notations from harmonic analysis of groups defined over a local field. We

mainly focus on the case where the group is the multiplicative group 𝔾
m

.

2.1. Characters, Haar measures, and absolute values. Let F be a local field, and if F

is nonarchimedean we let O be its valuation ring with uniformizer ϖ and residue field

k = 𝔽q. We fix, once and for all, a nontrivial additive character

Ψ = ΨF : F −→ ℂ×,

as well as an additive Haar measure dµ on F, such that the Fourier transform F on Fwith

respect to Ψ and dµ is involutive: in other words, (F2f)(x) = f(−x). In this paper, we will

make the following choices for dµ:

(1) when F is nonarchimedean, O has measure 1;

(2) when F = ℝ, the unit interval [0, 1] has measure 1;

(3) when F = ℂ, the unit square [0, 1]× [0, i] has measure 1.

We also normalize the absolute value | · | on F to be the factor by which dilation scales the

additive Haar measure, or more explicitly:

(1) when F is nonarchimedean, |ϖ| = q−1
;

(2) when F = ℝ, |x| = sgn(x)x;

(3) when F = ℂ, |z| = zz̄.

Then dµ/| · | is a multiplicative Haar measure on F×.

Accordingly, the character Ψ is as follows:

(1) when F isℚp, the choice of uniformizerϖ induces a group isomorphism F/O ∼= µp∞
(the p-power roots of unity in ℂ×

), and we let Ψ(x) = x mod O;

(2) when F is a finite extension of ℚp, we have Ψ(x) = Ψℚp(TrF/ℚp(ϖ
−dx)), where the

O-moduleϖ−dO is precisely the set of elements y such that TrF/ℚp(yO) ⊂ ℤp;

(3) when F = 𝔽q((ϖ)), Ψ is the composition of projecting to the coefficient ofϖ−1
, and

an isomorphism 𝔽q ∼= µq ⊂ ℂ×
;

(4) when F = ℝ, Ψ(x) = e−2πix;

(5) when F = ℂ, Ψ(z) = e−πi(z+z̄) = e−2πiℜ(z)
.

Following the conventions of number theory, we shall call a continuous homomorphism

F× → ℂ×
a quasi-character (instead of a character per conventions of group theory) of F×.

A unitary quasi-character (i.e., its image lands in the unit circle) is called a character of

F×. The choice of measure on F× induces also a measure on the group of characters of

F× endowed with its natural locally compact topology, in such a way that the Fourier

inversion formula holds.

We make the following notational definitions:

3
As we recall below, the topology in fact determines a canonical absolute value; usually, one therefore

thinks of the topology as part of the datum of a local field, but not the absolute value.
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Definition 2.1.1. Given a quasi-character χ : F× → ℂ×
of F× and s ∈ ℂ, we define its s-twist

to be the quasi-character

χs := χ| · |s.

To avoid ambiguity, we adopt the convention that χns := (χs)
n = (χn)ns for any integer

n. Namely, raising to a power always has lower priority than s-twisting. We also define the

shorthands χ+ := χ 1
2
, χ− := χ− 1

2
, χ−1+ := (χ+)

−1 = (χ−1)−, χ++ := (χ+)+, and so on.

2.2. γ, L, and ϵ-factors. Let χ be a quasi-character of F×. There are three meromorphic

functions on ℂ attached to χ: the γ-factor, the L-function (or L-factor), and the ϵ-factor,
which will be used frequently throughout this paper. The most important of the three, for

us, will be the γ-factor.

These will be denoted by γ(s, χ), L(s, χ) and ϵ(s, χ) respectively. They are all compatible

with twisting, in the sense that

γ(s+ t, χ) = γ(s, χt) = γ(0, χs+t),

L(s+ t, χ) = L(s, χt) = L(0, χs+t),

ϵ(s+ t, χ) = ϵ(s, χt) = ϵ(0, χs+t),

and we will denote their values at s = 0 by γ(χ), L(χ), ϵ(χ), when defined, that is to say,

when s = 0 is not a pole of the meromorphic function. When χ = | · |s, we also use the

shorthand γ(s) := γ(| · |s), and similarly for L(s), and ϵ(s).

2.2.1. The γ-factor as the Fourier transform of a multiplicative character. The most important,

for us, will be the γ-factor γ(s, χ) which tells us what the Fourier transform of a character

is. Its value γ(χ) = γ(0, χ) at s = 0 is characterized by the following equality:

F(χ−1) = γ(χ)χ−1. (2.2.1)

A priori, the left hand side is a distribution; the assertion is that, when γ(s, χ) does not

have a pole at s = 0, the left-hand side is represented by the function on the right-hand

side. Homogeneity arguments already imply that F(χ−1) and χ−1 are multiples of one

another, so the only question has to do with the scalar, and that is what γ tells us.

Remark 2.2.2. The γ-factor is often characterized in number theory by means of the follow-

ing equality which is essentially a restatement of (2.2.1):∫
F

Φ̌(x)χ−1(x)|x|1−s
dx

|x|
= γ(s, χ)

∫
F

Φ(x)χ(x)|x|s
dx

|x|
,

forΦ a Schwartz-Bruhat function on F (this means a Schwartz function for F archimedean,

and a locally constant function of compact support otherwise), and Φ̌ := F(Φ).

2.2.3. Evaluation of the γ-factor. It is not difficult to directly evaluate γ(s). For example,

take the case F = ℝ; one readily computes that, writing I = 2πi and Ī = −2πi,

γ(s) =
1

(I−s + Ī−s)Γ(s)
= (Is−1 + Īs−1)Γ(1− s). (2.2.2)
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However, there is a more elegant way to rewrite this as a ratio of two Γ -funtions that

reflects better the involutive property of Fourier transform, and also generalizes well to

local fields because Γ -functions are just special cases of L-functions.

The L-function or L-factor attached to χ is defined as:

L(s, χ) :=


1

1−χ(ϖ)q−s if F is nonarchimedean and χ is unramified,

1 if F is nonarchimedean and χ is ramified,

π− s+t+c
2 Γ

(
s+t+c
2

)
if F = ℝ and χ(x) = |x|tsgn(x)c where c ∈ {0, 1},

2(2π)−(s+t)Γ(s+ t) if F = ℂ and χ(z) = |z|t.

Then one always has

γ(s, χ) =
L(1− s, χ−1)

L(s, χ)
× (abs)

for unique a, b ∈ ℂ; we write ϵ(s, χ) = abs for this a and b.

Said differently, ϵ-factor is defined in terms of the L-factor and the γ-factor by means of

ϵ(s, χ) := γ(s, χ)
L(s, χ)

L(1− s, χ−1)
. (2.2.3)

In the nonarchimedean case, we have, for ψ unramified,

ϵ(s, χ) = a · q−f(s− 1
2 )

where a has absolute value 1. The reader can refer to [Tat79] for more details.

2.2.4. Other equalities for the γ-factor. There are a variety of equivalent forms of (2.2.1) that

we record for reference. Replacing χ by χs, we have

γ(s, χ) = F(χ−1s )(1) =

∫
F

χ−1(x)|x|−sΨ(x)dx. (2.2.4)

Applying Fourier transform again to (2.2.1) and using the involutive property, we have

χ̌ := F(χ) =
(
χ(−1)γ(1, χ)χ1

)−1
. (2.2.5)

which can be written symmetrically as F(χ−) = χ(−1)γ(1
2
, χ)−1χ−1+ . If we apply F again

to (2.2.1) we find that

γ(0, χ)γ(1, χ−1) = χ(−1), (2.2.6)

and so also γ(1
2
, χ)γ(1

2
, χ−1) = χ(−1), and moreover combining this with (2.2.4) we arrive

at

γ(s)−1 =

∫
F

|x|s−1Ψ(x)dx (2.2.7)
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2.2.5. Multisets of characters. Lastly, we use the following notational conventions for multi-
sets of characters X, Y: we let X−1

(resp. Xs, X+, X−, etc.) to be the multi-set consisting of

characters χ−1 (resp. χs, χ+, χ−, etc.) for χ ∈ X, and

X⊗ Y := {xy | x ∈ X, y ∈ Y}.

Similar to the single character case, X−1
s means (Xs)

−1
. If X = {χ} is a singleton, we also

use χ⊗ Y := X⊗ Y. In addition, we let

γ(s, X) :=
∏
χ∈X

γ(s, χ),

and similarly for the L-factor or the ϵ-factor.

For general groups other than 𝔾
m

, the definition of γ, L, and ϵ-factors are more com-

plicated and we only need them for a small portion of the paper. For this reason we will

postpone the discussion until § 9.5.

2.3. Adjointness and isometric properties of the Fourier transform. To avoid any sign

confusions we write these out. For Φi Schwartz–Bruhat functions on F, we have (writing

simply Φ̌ for the Fourier transform of Φ)∫
F

Φ1Φ̌2 =

∫
F

Φ̌1Φ2,

as it follows directly from the definition. If we replace above Φ2 by its Fourier transform,

we arrive at ∫
F

Φ1(x)Φ2(−x) =

∫
F

Φ̌1Φ̌2.

Finally, replacing Φ2 by Φ2(−x), we get∫
F

Φ1Φ2 =

∫
F

Φ̌1Φ̌2.

2.4. Review of integration on projective spaces. We will several times have occasions to

integrate densities over projective spaces, and we now set up relevant notations.

LetW be a k-dimensional vector space over F. We say a complex-valued function φ on

W − {0} is (−k)-homogeneous if φ(tw) = |t|−kφ(w) for nonzero t ∈ F×. There is, up to

scaling, a unique GL(W)-invariant functional on such functions, denoted by

φ 7−→
∫
ℙW
φ

which we regard as “integration overℙW”. It can be normalized by the following require-

ment, once we pick Haar measures on W and F×: for a Schwartz function Φ on W itself,

the function Φ̄(w) =
∫
F× |t|

kΦ(tx) is (−k)-homogeneous, and we require∫
ℙW
Φ̄ =

∫
W

Φ.
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Now, fix coordinates W ≃ Fn, and suppose the Haar measures on both W and F× are

induced from a Haar meausre on F. Then one readily verifies∫
ℙn−1

φ =

∫
Fn−1

φ(1, x2, . . . , xn)dx2 · · ·dxn. (2.4.1)

Part 1. Definitions and statements

3. Definition of the tetrahedral symbol

In this section, we define the tetrahedral symbol. The first two subsections, § 3.1 and

§ 3.2, set up notational preliminaries about tetrahedra and SO3 respectively. In § 3.3 we

describe the datum defining the tetrahedral symbol, and the actual definition is given in

§ 3.4 (under some mild simplifying conditions) and § 3.5 (in general).

3.1. Tetrahedra. Consider a tetrahedron, with the following labeling: we label the four

vertices by bold face numbers 1, 2, 3, 4, the six edges by unordered pairs of vertices, and

the twelve oriented edges by ordered pairs of distinct vertices; we denote these sets by

V,E,O respectively. For two vertices i, j ∈ V, we will use ij to denote either the associated

oriented edge (from i to j) or the unoriented one and the context will make it clear which

version we are referring to. There are natural maps

O −→ E, ij 7→ ij

O −→ V, ij 7→ i

which, respectively, assign to an oriented edge the underlying unoriented edge or its

source vertex. For each i ∈ V, we let Oi ⊂ O be the oriented edges with source i, that is

the preimage of i under the second map above.

3.2. Group-theoretic setup. Let

R = SO3(F)

be the special orthogonal group of a nondegenerate ternary quadratic form over the local

field F. Note that we allow an arbitrary form, not only a split one; therefore, in the case

of F = ℝ, the group R is either compact SO3 or PGL2(ℝ), and more generally R is either

PGL2(F) or the projective group of units in a quaternion algebra over F. Now define:

G = RO, D = RE, H = RV. (3.2.1)

Here we regard D,H as subgroups of G, by means of the maps O → E and O → V. We

may visualize elements of G ≃ R12 as 12-tuples of elements of R thus:[
g12 g13 g14 g23 g24 g34
g21 g31 g41 g32 g42 g43

]
,

and then D ≃ R6 and H ≃ R4 correspond to subgroups:

D =

[
a b c d e f

a b c d e f

]
, H =

[
x x x y y z

y z w z w w

]
.
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We fix a Haar measure on R and so also on G,D,H, etc as follows: if R is compact,

then we let its volume be 1; in the nonarchimedean split case we normalize the Haar

measure so that SO3(O) has volume 1. For the remaining case, when R = PGL2(ℝ) or

PGL2(ℂ), we first fix an algebraic volume form on PGL2, identifying it by means of the

map g 7→ (g · 0, g · 1, g ·∞) with (ℙ1)3 minus diagonals; on this space, we consider the

unique algebraic volume formωwhose restriction to (𝔸1)3 minus diagonals is

ω :=
dx1 ∧ dx2 ∧ dx3

(x1 − x2)(x2 − x3)(x3 − x1)
. (3.2.2)

One readily verifies that this this is R-invariant. Then |ω| defines an volume form on the

F-points of R. Note that this construction works in the case of F nonarchimedean too, but

it gives a different measure: it would assign to the O-points the volume (1− q−2).

Sometimes we will need to use both the Haar measure and (3.2.2) for nonarchimedean F,

and so to emphasize their distinction, we will also use d
ℙg to denote the measure induced

by (3.2.2). For convenience, we define

νℙ :=
d
ℙg

dg
=

{
(1− q−2) R = PGL2(F), F nonarchimedean,

1 otherwise.
(3.2.3)

3.3. The tetrahedral datum. We denote by Π an assignment of an irreducible smooth repre-
sentation of R to each unoriented edge of the tetrahedron.4 The representation will, of course,

matter only up to isomorphism. To this we will attach an invariant {Π} which is a complex

number defined up to sign. The matter of fixing the sign is an interesting one, which we

return to at various points, in particular § 3.6 and part (2) of Theorem 5.1.1.

Denoting the assignment Π by e 7→ πe, we will also refer to πij for an oriented edge

ij ∈ O by means of the natural map O→ E, and taking the external tensor product of all

πij produces an irreducible representation of G, denoted simply by ΠG.

Now, each πe admits an invariant symmetric self-pairing

(−,−): πe × πe −→ ℂ.

Such a pairing always exists ([JL70, Theorems 2.18, 5.11, 6.2]); making clever use of

multiplicity one subgroups, Dipendra Prasad proved that it is also always symmetric

([Pra99, Corollary 2, Proposition 2]). Moreover, any two such pairings are equivalent

under a rescaling of the underlying space ofπe; and by Schur’s lemma, the automorphisms

of the pair (πe, (−,−)) reduce to multiplication by ±1.5 We will frequently refer to such a

pairing as a rigidification, because it reduces the automorphism group of π from ℂ×
to±1.

Fix such a self-pairing for each πe, which then induces a pairing between πij and πji;

these induce a D-invariant linear contraction map

⟨−⟩ : ΠG −→ ℂ,

4
The word “smooth”, in the nonarchimedean case, means that each vector has open stabilizer. In the

archimedean case, it connotes that the underlying vector space for R has a Fréchet topology such that the

map g 7→ g · v is smooth. Subtle issues of topology, however, will be almost irrelevant for us.

5
While this seems ad hoc, this is a special case of a construction that works for any split reductive group,

see discussion of duality in [BZSV24].
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which, concretely, is given by ⊗
ij∈O

vij ∈ ΠG 7−→
∏
i<j

(vij, vji).

We will also denote this by ΛD to emphasize its D-invariance.

3.4. Definition of the tetrahedral symbol when ΠG is tempered.

3.4.1. Definition in the compact case. We begin with the definition of the tetrahedral symbol

in “the compact case”, that is to say, when R is compact (cf. § 1.1). In this case all the

representations πij are finite dimensional. We put πOi := ⊠ij∈Oiπij, a representation of

ROi ≃ R3. For example,

πO1 = π12 ⊠ π13 ⊠ π14.

Then ΠG = ⊠i∈VπOi , and the pairings on each πe induce also a self-pairing on each πOi .

It will be very convenient to make use of the following:

Lemma 3.4.2. There exists a real structure πℝe on which (−,−) defines a real inner product.

Proof. This is well-known, but we write out the argument for later reference. Fix a unitary

inner product on πe, which we denote by ⟨x, y⟩. Necessarily (x, y) = ⟨x,Cy⟩ for some

complex-antilinear C : πe → πe which commutes with the group action, and one readily

sees that C2 = ±1. Symmetry of the pairing implies that ⟨x,Cy⟩ = ⟨y,Cx⟩; taking x = Cy

we deduce that C2 is positive, thus must be +1. Then the fixed points of C gives the

desired real structure, since x = x+Cx
2

+ ix−Cx
2i

. ∎

We suppose that each πOi admits a nonzero R-invariant vector vi; otherwise we will

define {Π} := 0.6 Then the self-pairing (vi, vi) is nonzero, because the self-pairing is

positive definite on a real structure for πOi and a suitable multiple of vi is real for this

structure. We therefore normalize vi so that (vi, vi) = 1 and let

V = v1 ⊗ v2 ⊗ v3 ⊗ v4 ∈ ΠG, (3.4.1)

which, having fixed pairings, is uniquely specified up to a sign. Contract V to obtain what

we shall call the tetrahedral symbol

{Π} := ⟨V⟩ ∈ ℂ. (3.4.2)

This depends on our choice of pairings only up to an overall ± sign.

In the classical case whenR is the compact real SO3 and each πij is indexed by its highest

weight, this is up to sign the standard definition of the classical 6j symbol; this will follow

from our computations in § 6.1.

6
It would be more proper to regard the symbol as undefined in those cases. We adopt this convention,

however, in order to avoid having to repeatedly say “or {Π} is undefined” in various statements; the same

convention is followed in the theory of 6j symbols.
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3.4.3. Definition in the tempered case. We now drop the assumption that R is compact, but

assume that each πe is tempered. Recall that an irreducible representation of a group over a

local field is called tempered if it is “weakly contained” in the regular representation L2(R);

for details on what this means, see [HCH88]. As we discuss further in § 3.5.1, tempered

reprsentations can be considered, roughly speaking, as a “real form” of a complex variety

parameterizing all representations. In the compact case, all irreducible representations

are tempered.

Every tempered representation admits a G-invariant inner product; in particular, by

inspecting the proof, we see that Lemma 3.4.2 continues to apply: there exists a real

structure πℝe and a R-invariant inner product upon it.

In place of D and H-invariant vectors in ΠG, we will use D and H-invariant functionals.
The space of D-invariant functionals is always exactly one-dimensional, spanned by ΛD

defined as before; the space of H-invariant functionals is zero or one (see [Pra90]). Al-

though unnecessary for our immediate purposes, the two possibilities are distinguished

by the signs of various ϵ-factors, as explained in the just-quoted work.

If a nonzero H-invariant functional exists, there are two natural ways to construct it.

First of all, we can normalize one, up to sign, by the following rule:

ΛH(v1)Λ
H(v2) =

∫
H

(hv1, v2)dh, v1, v2 ∈ ΠG. (3.4.3)

Note the pairing that is used here, and indeed everywhere unless explicitly stated otherwise, is the
self-duality pairing, not an inner product.

The integral is absolutely convergent on account of the assumption thatΠG is tempered.

In this case, ΛH is nonzero if and only if the space of H-invariant functionals is nonzero,

as is proven in a more general context in [SV17]. On the other hand, we can start with ΛD

and just average it to be H-invariant:

(ΛH) ′ : v 7−→
∫
H∩D\H

ΛD(hv)dh. (3.4.4)

This is also absolutely convergent under the assumption of temperedness: see § 10.3. By

the multiplicity-one property, ΛH and (ΛH) ′ are proportional to one another; we define

the tetrahedral symbol {Π} to be the proportionality factor:

(ΛH) ′ = {Π}ΛH.

This agrees with the definition given in the compact case. Indeed, define V as in (3.4.1);

it is straightforward to show that ΛH = (V,−) satisfies (3.4.3). Thus, on the one hand,

ΛH(V) = 1 by definition, and on the other hand, (ΛH) ′(V) = ⟨V⟩, which coincides with

(3.4.2).

Warning 3.4.4. The definition just given is dual to the definition given in § 1.1. Relative to

that discussion, we have swapped the role of vertices versus faces; or to put it differently,

by swapping the upper row with the lower row in the classical 6j notation.

3.5. Definition of the tetrahedral symbol in the general case.
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3.5.1. Principal series and the classification of tempered representations. We can extend the

definition beyond tempered representations by a process of analytic continuation. This

discussion is only relevant in the case when R is noncompact, which we shall therefore

assume.

We must first recall the notion of principal series representation and the classification

of tempered representations. Principal series are a twisted version of functions on the

projecive line ℙ1F. Namely, let χ be a quasi-character of F×, and consider the space πχ
of functions on F2 − {0} that are homogeneous of degree (χ2)−1 = χ2− = (χ−)

2
, that is, a

function on F2 − {0} satisfying

f(λ · z) = χ2(λ)|λ|−1f(z).

Then R, identified with PGL2(F), acts on such functions by means of

g · f : z 7−→ f(zg̃)χ−1− (det g̃) = f(zg̃)(χ−1) 1
2
(det g̃),

where g̃ ∈ GL2(F) is an arbitrary lift of g, the choice of which has no effect on the action.

This construction yields an association

quasi-characters χ of F× −→ smooth representations πχ of R.

The resulting representation πχ is called a principal series representation. It is not irreducible

in general, but it is if χ is away from certain discrete subset of all quasi-characters. More-

over, πχ and πχ−1 have the same semi-simplification. For χ a character, that is to say, a

unitary quasi-character, in particular, πχ is always irreducible, tempered, and πχ ≃ πχ−1 .

With this setup, a tempered representation is either:

(1) of the form πχ, where χ is a character uniquely determined up to the substitution

χ↔ χ−1; or

(2) isomorphic to a direct summand of L2(R); these form a countable set of irreducible

representations called the discrete series.

3.5.2. Definition of the tetrahedral symbol in the general case. We continue to suppose that

R is noncompact. Let P0 be the set of isomorphism classes of irreducible tempered

representations. Because of the classification above, we can think of P0 as a subset of

points of a complex analytic variety P:

P = {discrete series}
∐{

quasi-characters of F× up to inversion

}
. (3.5.1)

In fact, P0 is a subset of the real points P(ℝ) for a natural real structure on P. What is more

important for us is that an analytic function on P that vanishes on P0 is identically van-

ishing; therefore, there is at most one way to extend a function from P0 to a meromorphic

function on P. The tetrahedral symbol thus extends:

Proposition 3.5.3. The function {Π}
2 extends to a meromorphic function on PE.

The proof is given in § 10.1. It is based on studying the the asymptotic behavior of

the integrand in (3.4.4) that enters into the definition of {Π}, which in all cases is very

simple; for example in the nonarchimedean case it is a geometric progression, in suitable

coordinates.
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Remark 3.5.4. Recall that {Π} is defined only when ΠG admits an H-invariant functional.

Whether this is so depends only on the component ofPE
to whichΠbelongs. Consequently,

the function {Π} is simply identically zero on some components of PE
; and these can be

identified by means of ϵ-factors using the results of Prasad, see § 9.5.1.

Remark 3.5.5. One way to interpret the proposition as giving an extension of tetrahe-

dral symbol from tempered representations to all irreducible ones. Indeed, there is an

identification of sets

P ≃ {isomorphism classes of irreducible representations of R} (3.5.2)

defined as follows: we associate to χ as above πχ if it is irreducible, and, otherwise, the

unique finite-dimensional subquotient of πχ ([JL70, Theorems 3.3, 5.11, 6.2]). It is likely

that the function {Π} thus extended coincides, even for nontempered representations, with

a function defined by means of suitably regularizing the integrals appearing in § 3.4.3.

However, we do not examine this in the current paper, and the identification (3.5.2) will

play no further role.

3.6. The sign ambiguity. Note that, even when {Π} is defined, {Π} is defined only up

to a sign. Unlike the classical situation, this sign ambiguity is essential: the meromorphic

function {Π}
2

described in the above proposition does not in general admit a meromorphic

square root. Of course, we could redefine the symbol to be {Π}
2

instead of {Π} but we

prefer not to do so for two reasons: first of all, it is {Π} and not its square that corresponds

to the 6j symbol; and secondly, the choice of sign is actually very interesting.

As a general convention, when we prove a formula of the form

{Π} = · · · ,

we always regard the equality as being up to sign. However, in all important such

instances, and particularly in §§ 5–7, the formula in fact gives more: it gives a mechanism

to resolve the sign ambiguity, in the sense that we will produce an explicit meromorphic

functionγwhich belongs to the same square class as {Π}
2
, and then

√
γ·{Π} can be globally

defined, not only up to sign.

It will turn out that our symbol {Π} enjoys the same symmetry properties as the classical

6j symbol (in fact, even more symmetries in some cases). Of course, since {Π} is only

defined up to signs, those symmetries are a priori also defined only up to signs. However,

by using the resolution of signs eluded above, we are able to make those symmetries

precise. Indeed, one of the miracles of the classical 6j symbol, is exactly that the Regge

symmetries are valid on the nose, without any unnecessary −1s; and we will achieve a

similar level of precision in Theorem 5.1.1. It is in fact impossible in our setting to achieve

only + signs, but we will have the next best thing and give a rather elegant description of

the signs.

All our work elucidating signs comes, however, at a price: one must make a choice of

orientation of edges; and in order to obtain the nicest formulas we even need to use a

slightly strange one, see the diagram (4.3.1).
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4. D6 and the tetrahedron

It has been observed by various authors, and perhaps brought into the greatest clarity

by Rudenko [Rud22], that the geometry of tetrahedron is related to the root system D6.
As we will soon see, the tetrahedral symbol reflects the geometry of the associated group,

and not just its root system.

In the present section, we will set up various notation that will make this connection

clearer. For us, the connection between the tetrahedron and D6 will be “ carried” by a

homomorphism of rank 6 free abelian groups
˜D6 ↪→ D6 to be defined in § 4.1. In §4.2 we

promote this injection of free abelian groups to a homomorphism of compact Lie groups,

and in §4.3 we will examine how the Weyl groupW(D6) interacts with the symmetries of

the tetrahedron.

4.1. The lattice D6 and its tetrahedral avatar ˜D6. The coroot lattice of type Dn will be

understood to be the sublattice of ℤ2n consisting of elements of the form

(x1, . . . , xn,−xn, . . . ,−x1),

n∑
i=1

xi ∈ 2ℤ. (4.1.1)

Here, and in what follows, a lattice is simply a free abelian group of finite rank. It is

equipped with the reflection groupW(Dn) = {±1}n−1 ⋊Sn obtained by permutations of

the xi and changes of an even number of signs. It also contains a distinguished W(Dn)-
invariant set of coroots, namely, all those vectors α that satisfy (α,α) = 2 for the standard

Euclidean inner product, and the reflections through their orthogonal hyperplanes gen-

erateW.

Following [Bou02, Plate IV], we identify Dn with the coweight lattice for the simply-

connected group Spin2n by projecting to the first n coordinates. Here Spin2n means the

universal (two-fold) cover of SO2n(ℂ); it is a complex semisimple group. The reader who

prefers compact Lie groups can equally well work with its maximal compact subgroup,

which is similarly described as the the universal (two-fold) cover of the compact group

SO2n(ℝ).
To relate D6 to the tetrahedron, we consider the set of odd integral-valued functions on

oriented edges

˜D6 := {f : O→ ℤ | f(ij) = −f(ji)},

where we say that a function, with domain the oriented edges of the tetrahedron, is odd
if inverting an edge negates (or inverts, where appropriate) the value of the function. As

a convention, we will denote such a function f by means of the 2 × 3 matrix of values as

follows: [
f(12) f(13) f(14)
f(34) f(24) f(23)

]
. (4.1.2)

Then
˜D6 is a lattice of rank 6, and there is an injection

˜D6 −→ D6 (4.1.3)
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which sends a function f to the element of D6 whose twelve coordinates are sums of values
of f on opposite edges. There are three pairs of opposite edges, but each comes with four

possible orientations; thus we get twelve such sums in all, symmetric under negation. For

definiteness, we take the first six coordinates of the element of D6 to be

f(12)± f(34), f(13)± f(24), f(14)± f(23), (4.1.4)

in the given order; the last six coordinates are uniquely determined by the first six.

4.2. The associated isogeny τ of compact, or reductive, groups. The isogeny of lattices

has a more group-theoretic manifestation which will play an important role in § 8. Namely,

there is a commutative diagram

˜D6 ⊗ 𝔾m
D6 ⊗ 𝔾m

SL
E
2 Spin12

τ

(4.2.1)

where the top row is an isogeny of tori induced from (4.1.3), and the bottom row is a

homomorphism of reductive groups in which these tori are maximal.

Here, the notation ( · ) ⊗ 𝔾
m

simply means that we replace integer variables in ( · ) by

𝔾
m

-valued ones; thus, for example,
˜D6⊗𝔾m

can be considered as functions from oriented

edges to 𝔾
m

satisfying f(ij)f(ji) = 1. Also, as mentioned earlier, the reader who prefers

compact groups to reductive groups may harmlessly replace 𝔾
m

by the unit circle, SL2 by

SU2, and Spin12 by the compact group of the same name.

To construct τ, let ℂ2ij be a two-dimensional vector space attached to edge ij with

standard basis {eij, eji}. Introduce a copy of SL2 indexed by {ij}, namely, the unimodular

automorphisms of ℂ2ij; its co-character group is then identified with pairs of integers

aij, aji satisfying aij + aji = 0. Taking the product over edges E we arrive at a model for

SLE
2 whose maximal torus is canonically identified with

˜D6 ⊗ 𝔾
m

. Now, for each pair of

opposite edges {ij}, {kl}, taking tensor product of the defining representations induces a

homomorphism
7

SL
{ij}
2 × SL

{kl}
2 −→ SO4 ⊂ GL(ℂ2ij ⊗ ℂ2kl),

Applying this construction to the three sets of opposite pairs — using the same order

that has been used in (4.1.4), that is: (12, 34), (13, 24), (14, 23) — we arrive at a map

SL
E
2 → SO12, which lifts uniquely to the desired map τ : SL

E
2 → Spin12 of (4.2.1). Note

that τ isn’t an embedding: it has a finite kernel {±1}2.

7
Here, to be precise, SO4 is the split form attached to the symmetric pairing in which

⟨eij ⊗ ekl, eji ⊗ elk⟩ = 1, ⟨eij ⊗ elk, eji ⊗ ekl⟩ = −1,

and all other pairings zero.
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4.3. W(D6) and the symmetries of the tetrahedron. By means of (4.1.4) we understand

W(D6) to act on
˜D6⊗ℝ. This action interacts richly with the geometry of the tetrahedron.

For example the constraint on dihedral angles isW(D6)-invariant, see Remark 4.3.4.

We shall now label several important subgroups, which together generate W(D6): the

orientation reversals, tetrahedral symmetries (which come in two versions: the evident

ones, and ones that use an orientation), and the Regge symmetries:

• The group I ≃ (ℤ/2)6 of orientation reversals: for each ij ∈ O there exists a unique

element of W(D6) which acts on
˜D6 ⊗ ℝ by “reversing the orientation of ij,” i.e.

negating the value of any function on ij.8 Such elements generate an elementary

abelian subgroup I ⊂W(D6) of order 26.

• The group T ≃ S4 of tetrahedral symmetries. These arise from physical symme-

tries of the tetrahedron, acting by permuting vertices in the evident fashion; for

example, (12) ∈ S4 will negate the value of f ∈ ˜D6 ⊗ℝ at 12.

• The subsetR = {r𝟙𝟜, r𝟚𝟝, r𝟛𝟞} of Regge symmetries, indexed by pairs of opposite edges.

These “exotic” symmetries were written down by Regge; they do not form a group,

and they depend on choice of an orientation, that is to say, a splitting E→ O.

– To elegantly resolve an important sign ambiguity down the line (see § 3.6

and Theorem 5.1.1), we will choose not the “dictionary” order, i.e. coming

from the order on the natural numbers 1 < 2 < 3 < 4, but rather the “vor-

tex”orientation
9

defined by the following diagram (4.3.1), where we also use

blackboard bold numbers 𝟙, etc. to denote each oriented edge.
10

1

4

2 3

𝟙

𝟛

𝟞

𝟝 𝟜

𝟚
(4.3.1)

– Note that the orientation is almost according to the dictionary order in V, with

one exception: the edge 31 is favored over 13, making the outer triangle an

oriented cycle rather than a simplex.

– For short we write r𝟙𝟜 for the element associated to {12, 34}, which is defined

as follows: For f ∈ ˜D6 ⊗ ℝ, let a, b, c, d be its values at 31, 14, 23, 24, i.e. the

remaining four edges, oriented according to the chosen orientation. Then

8
These should not be confused with the elements ofW(D6) that switch the signs of some coordinates xi.

9
There are multiple choices possible, but they are not completely random and the “admissible” choices

all lead to the same end.

10
We do apologize in advance for using different font shapes maybe a little excessively.
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r𝟙𝟜(f) has the same values at 12 and 34, but a, b, c, d are modified according to

a∗ = s− a, b∗ = s− b, c∗ = s− c, d∗ = s− d,

where s := a+b+c+d
2

is the “semi-perimeter.” We proceed similarly for r𝟚𝟝 and

r𝟛𝟞.

• For technical use only: the group Tor ≃ S4 of oriented tetrahedral symmetries.

These also arise from physical symmetries of the tetrahedron, but taking account of
orientation. We identify

˜D6 with functions on the set E using the vortex orientation

of (4.3.1), and then Tor
acts in the natural way on E. Thus, for example, the

transposition (12) ∈ S4 acting on f ∈ ˜D6 leaves its value at 12 unchanged. We call

Tor
the oriented tetrahedral group. .

To avoid potential confusion when compared with notations such as (4.1.2), we empha-

size again that

the vortex orientation is to be used only when we consider the symmetries Tor and
R, particularly the subtle sign issue associated with them. By default, in all other
instances unless specified otherwise, we use the ordering orientation.

We now discuss some of the group theory of how these various groups interact. For

the moment, the reader can skip this discussion, and refer back to it as necessary:

Lemma 4.3.1. Together with the group of orientation reversals I, either the group of tetrahedral
symmetries T or the group of oriented tetrahedral symmetries Tor generate the same subgroup of
W(D6); this subgroup is isomorphic to (ℤ/2)6 ⋊S4.

Lemma 4.3.2. Suppose we put the oriented edges in the following matrix:[
12 31 14
34 24 23

]
=

[
𝟙 𝟚 𝟛
𝟜 𝟝 𝟞

]
,

and let
(1) ri be the Regge symmetry that fixes the i-th column (so that r1 = r𝟙𝟜, and so on);
(2) hi ∈ Tor fix the i-th column and swaps the two rows in the other columns;
(3) vi ∈ Tor fix the i-th column and swap the two columns other than the i-th.

Then the group generated by Tor and R is isomorphic to S3 ×S4, with S3 generated by {hiri =

rihi}, and the commuting S4 generated by {viri = rivi}.

Proof. Relabel coordinates x1, . . . , x6 in D6 (cf. (4.1.1)) as y±1 , y
±
2 , y

±
3 , so that y±1 correspond

to 12± 34, y±2 correspond to 31± 24, and so on. Then r1, h1, v1 act as follows: r1 swaps y+2
with y+3 and negates y−2 , y

−
3 ; h1 negates y−2 and y−3 , and v1 swaps y±2 with y±3 . Then v1r1

(resp. h1r1) fixes four of the coordinates and acts as a reflection in the remaining two:[
y+1 y+2 y+3
y−1 y−2 y−3

]
7−→

[
y+1 y+2 y+3
y−1 −y−3 −y−2

]
resp.

[
y+1 y+3 y+2
y−1 y−2 y−3

]
.

The action of the other viris and hiris is similar. The result is now an easy exercise. ∎

Lemma 4.3.3. Any of the following collections generate all ofW(D6):
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(1) the group I and subset R;
(2) the groups I, Tor, and any single element in R;
(3) the groups I, T, and any single element in R.

Proof. We use the notation in the proof of Lemma 4.3.2. Considering the permutation

action on the y±s and ignoring signs gives a map W(D6) −→ S6. We will first of all

describe the images of I,R,Tor
under this map:

• Orientation reversal symmetries have image in S6 given by a transposition that

switches y+i with y−i for one value of i. Consequently, the image of of I in S6 is

isomorphic to (ℤ/2)3.
• Regge symmetries in R induce transpositions on the y+s while fixing all y− coor-

dinates.

• Oriented tetrahedral symmetries in Tor
: these stabilize the y+s and y−s and act on

them according to the same permutation of the index set 1, 2, 3.

Conjugating orientation reversal by Regge symmetries, we can produce any transpo-

sition swapping any one of {y+1 , y
+
2 , y

+
3 } with any one of {y−1 , y

−
2 , y

−
3 }, and then further

conjugating by orientation symmetries, we can produce all transpositions. So, the group

generated by I and R surjects onto S6, with kernel a permutation-invariant subgroup of

(ℤ/2)60 (the subscript means elements of sum zero). The order of this kernel is at least 8,

since I has order 26 but its image in S6 has order 23; therefore, this kernel is all of (ℤ/2)60.
Clearly R is contained in the group generated by a single Regge symmetry and Tor

, so

the second claim follows. The third claim then follows from Lemma 4.3.1. ∎

Remark 4.3.4. Here is a manifestation of W(D6) in the geometry of Euclidean tetrahedra.

For such a tetrahedron, choose an odd function θij on oriented edges so that |θij| gives the

ij dihedral angle and put

x = image of eiθij ∈ ˜D6 ⊗ ℂ×
inside D6 ⊗ ℂ×.

Then [PF20, § 3, (2)] says precisely that the constraint to form the dihedral angles of a

Euclidean tetrahedron takes the form

P ≡ 0

where P is a W(D6)-invariant regular function on the torus D6 ⊗ ℂ×
. In fact, D6 ⊗ ℂ×

is

the maximal torus of the group Spin12, and in this way we can regard x as an element

of the compact group of this type. With this identification, the polynomial P is given

by a linear combination of the characters of the trivial, half-spin, adjoint, and symmetric

square representations.

4.4. The “vertex” and “face” half-spin representations. The spin representation of Spin12,

and its relation to the geometry of the tetrahedron through the prior discussion, will be

particularly relevant for us later on, and we set up notation now.
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Recall that, given an element of Spin2n whose image in SO2n has standard eigenvalues

λ±1 , . . . , λ
±
n , its eigenvalues in the two half-spin representations are collectively given by

n∏
i=1

λ
± 1
2

i .

One half-spin involves those eigenvalues with an even number of −1 signs, and the other

half-spin involves the remaining eigenvalues, i.e., those with an odd number of −1 signs.

In the case of Spin12, both the half-spin representations are of dimension 32. Each

half-spin gives rise to a set of weights in the dual of D6, and so also, by means of
˜D6 → D6,

to a set of 32 weights in the dual of
˜D6. For one of the half-spins, which we call S, this set

of weights consists of all functionals

f 7→ ±f(ij)± f(ik)± f(il),

that is, where we sum f over three edges that meet at a vertex. For the other half-spin, the

set of weights is similarly defined but now involving three edges that span a face. We will

be interested in the first, or “vertex”, half-spin representation S. Note that:

• The pullback of S via τ : SL
E
2 → Spin12 is given by the sum of four copies of

ℂ2 ⊗ ℂ2 ⊗ ℂ2, where we tensor together the standard representations for each

triple of edges that meet in a common vertex.

• If we choose x ∈ ˜D6 ⊗𝔾m
, specified by a set of coordinates xij satisfying xijxji = 1,

the eigenvalues of the corresponding toral elements on S are the 32 products

x±ijx
±
ikx

±
il, (4.4.1)

where {ij, ik, il} = Oi are edges sharing one vertex i.

There is an important splitting into a direct sum of Lagrangian subspaces

S = S+ ⊕ S−,

stable under the diagonal torus of SL
E
2. Namely, we take S+ to contain all eigenspaces

arising from eigenvalues (4.4.1) where there are at least two+ signs amongst the exponents;

similarly, we define S− to correspond to eigenvalues where there are at least two negative

signs amongst the exponents.

5. The main theorems

In this section, we formulate the two main results of the present paper. The first

(Theorem 5.1.1) shows that {Π} enjoy aW(D6)-symmetry in the principal series case. The

second (Theorem 5.2.1) gives an explicit evaluation when Π is additionally unramified.

Both theorems give explicit ways, within the contexts to which they apply, of resolving

the sign ambiguity of {Π}.
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5.1. Weyl symmetry for principal series. Let us assume R is split and consider now the

tetrahedral symbol on principal series representations. As we will see, in this situation,

we will be able to resolve the sign ambiguity and also will find a symmetry by the Weyl

group of D6.
We will first fix a good parameterization of such representations by character-valued

odd functions on oriented edges:

X := {χij ∈ F̂× | χijχji = 1},

where F̂× denotes the set of characters (i.e., unitary quasi-characters) of F×. As observed

after (4.2.1), the space X can be identified with the tensor product of abelian groups:
˜D6 ⊗ F̂×

∼−→ X, (5.1.1)

f⊗ λ 7−→ χij = λ
f(ij)

For such χij, let πij be the principal series attached to χij, as has been defined in § 3.5.1;

note that the isomorphism class of πij does not depend on the order of i and j. By analogy

with the standard notation for classical 6j symbols, we shall write{
χ12 χ13 χ14

χ34 χ24 χ23

}
= {χ}

for {Π} in this case. It turns out that {Π} is not identically zero on any components where

all π are principal series. By Proposition 3.5.3, the square of this symbol extends from

X to a meromorphic function on the space Xℂ of odd functions from oriented edges to

quasi-characters.

In order to make better sense of this, we will need to consider the map

˜D6 ⊗ F̂× −→ D6 ⊗ F̂×. (5.1.2)

induced by
˜D6 → D6 from (4.1.4). The right hand side can be considered as collections of

charactersψ1, . . . , ψ6, together with a chosen square root of the productψ1 · · ·ψ6; the morphism

(5.1.2) sends χij to the ψs given by χ12χ
±
34, χ13χ

±
24, χ14χ

±
23 together with the square root of

their product given byχ12χ13χ14. In particular, all productsχ±ijχ
±
ikχ

±
il, as well as all products

of the form χ±ijχ
±
jkχ

±
ki, depend only on the image of χij under (5.1.2).

To efficiently state our main results, we introduce the following set of 32 characters:

S =
{
χ±ijχ

±
ikχ

±
il

∣∣ i ∈ V
}
. (5.1.3)

where for each of the four i ∈ V, we allow all possible choices of the three signs. This

S is visibly an avatar of the weights of the spin representation introduced in § 4.4; the

connection will be made even clearer in § 9.5. We divide S = S+
∐
S−, where S+ ⊂ S

contains all terms that involve either three +1’s in the exponents, or two +1’s and one −1,

whereas S− = S − S+. Write γ(s, S), γ(s, S+), γ(s, S−) for the corresponding γ-functions,

where we follow the notation of § 2.2.5 and define γ(s,−) for a multiset to be the product

of the constituent γ-functions; we have

γ(s, S) = γ(s, S+)γ(s, S−).
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The following is our first main theorem:

Theorem 5.1.1. We have the following results:
(1) The value of {χ}2 depends only on three-fold products χ±ijχ

±
ikχ

±
il and in particular the rule

χ 7→ {χ}
2 factors through the map

X ≃ ˜D6 ⊗ F̂× −→ D6 ⊗ F̂×, (5.1.4)

in such a way that the extended function on the right hand side is invariant by the action
ofW =W(D6) (cf. § 4.1 for theW-action).

(2) More precisely, the rule

χ 7−→
{
χ12 χ13 χ14

χ34 χ24 χ23

}√
γ
(1
2
, S−

)
can be globally defined on D6 ⊗ F̂×: there exists a meromorphic function I defined on
D6⊗ F̂× that agrees with the right-hand side for suitable choice of sign of√γ. This function
can be chosen to depend only on products of the form χijχikχ

−1
il and satisfy the following

W-equivariance:
I(w−1χ)

I(χ)
= ι(w,χ)γ

(1
2
, S+ ∩w(S−)

)
, (5.1.5)

where ι(w,χ) ∈ ±1 is characterized by the fact that the right hand side of (5.1.5) is a
1-cocycle of W valued in the multiplicative group of nonzero meromorphic functions on
D6 ⊗ F̂×, and the following facts, using notation as in § 4.3:
(a) when w ∈ T is a tetrahedral symmetry or w ∈ R is a Regge symmetry, ι(w,χ) = 1;
(b) when w is the element sij that exchanges χij with χji, ι(w,χ) = χikχilχjkχjl(−1),

where {i, j, k, l} = V.

A proof is sketched in § 5.3. The proof proper appears in § 12.3.

Remark 5.1.2. (1) We note that the extension of {χ} to D6⊗F̂× is no longer the tetrahedral

symbol for R, because (5.1.4) is not surjective. It would be interesting to interpret

the extension in terms of tetrahedral symbols for a spin group rather than R, i.e.,

in the noncompact case, SL2 rather than PGL2, cf. § 9.4.

(2) It is not a formality that a choice of signs for ι(w,χ) exists. It is equivalent to the

following fact: the 2-cocycle onW defined by

(w,w ′) 7−→
(
χ 7→

∏
ψ∈S+,w−1ψ∈S−
(ww ′)−1ψ∈S+

ψ(−1)

)

is cohomologically trivial.

(3) We will define the function I using a certain hypergeometric formula for the tetra-

hedral symbol (see §§ 6.3 and 7).

(4) The statement above does not directly cover Regge’s original symmetry of 6j sym-

bols, which pertains to the case of R compact. We outline our expectations about

this in § 9.5.4.
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5.2. Evaluation of {Π} in the unramified case. Suppose now that F is nonarchimedean,

and let 𝕋 ⊂ ℂ×
be the unit circle. There is an embedding of groups

𝕋 −→ F̂×

z 7−→ (x 7→ zvalF(x)),

which, in words, sends a complex number z of absolute value 1 to the character of F× that

sends a uniformizer to z. The image of this homomorphism gives the unitary unramified

characters of F×, i.e., those that are trivial on the maximal compact subgroup O× ⊂ F×.

The isomorphism (5.1.1) identifies the subspace X0 ⊂ X consisting of unramified unitary

characters with the tensor product

X0 ≃ ˜D6 ⊗ 𝕋, (5.2.1)

and by Theorem 5.1.1, the function Jχ descends to aW(D6)-invariant function on

D6 ⊗ 𝕋 = the maximal torus of Spin12,

where we now understand Spin12 to mean the compact group of that type, and the

identification was that discussed after (4.1.1).

Now, the W(D6)-invariant function on D6 ⊗ 𝕋 are precisely those arising by restriction

of class functions (i.e., conjugacy-invariant continuous functions) on Spin12. It is there-

fore, we hope, irresistible to ask for a description of this class function in terms of the

representation theory of Spin12.

As discussed in § 4.4, there is a 32-dimensional half-spin representation S of Spin12

whose weights pull back under
˜D6 → D6 to the 32 linear functionals

{±f(ij)± f(ik)± f(il)}

where {ij, ik, il} = Oi are edges sharing starting vertex i. It contains a distinguished 16-

dimensional cone of pure spinorsP ⊂ S (for details see § 13.2) viewed as a complex subvariety

of S. Its ring of regular functionsℂ[P] then affords a weightedℂ× = 𝔾
m
(ℂ)-action induced

by the scaling on S.

Theorem 5.2.1. Suppose F is nonarchimedean and χ ∈ X0 with image σ ∈ D6 ⊗ 𝕋. Then{
χ12 χ13 χ14

χ34 χ24 χ23

}
=

(1− q−2)3√
L(1
2
, S)

Tr

(
q− 1

2σ,ℂ[P]
)
, (5.2.2)

where q− 1
2 acts on ℂ[P] through the weighted action of ℂ×, and S is as in (5.1.3).

A proof is sketched in § 5.3 and detailed in § 13.

In words, up to normalizing factors (see § 15.2 for a geometric point of view concerning

the factor (1− q−2)3), the tetrahedral symbol is the weighted character of the Frobenius action
on the algebraic function ring of the spinor cone. Why are the half-spin representation and

the spinor cone involved? Relative Langlands duality offers at least a context in which

to understand this, explaining, for example, why the spinor cone is actually Lagrangian

inside the half-spin; see § 8 for discussion.
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5.3. A sketch of the proofs of Theorems 5.1.1 and 5.2.1. In § 6.3, we will write down an

explicit integral formula (the “edge formula”) for {χ}, whose proof is in § 11. The integral

is then made more explicit in § 7 into a hypergeometric form. It will be clear by then — for

example, from (7.2.2) — that {χ}
2

depends only on characters of the form χ±ijχ
±
ikχ

±
il. This

proves (5.1.4).

For the W(D6)-symmetry, we construct explicit symmetries of {χ} that generate the

whole Weyl group, corresponding to the generators discussed in § 4.3. The least trivial ones

are the Regge symmetries, which come from a Fourier duality result for hypergeometric

integrals. This proves the symmetry up to signs. The signs can then be pinned down

using the Mellin transform of the hypergeometric integral from § 14.6. See § 12 for the

details.

Now consider Theorem 5.2.1. The right-hand side of (5.2.2) can be computed using the

Weyl character formula after we decompose ℂ[P] into irreducible Spin12-representations.

To analyze the left-hand side we rely on another integral formula (the “vertex formula”)
11

for {χ} that we will prove in § 6.2; it leads to a computation involving the Bruhat–Tits tree

of PGL2(F). A direct comparison of both sides is thus conceptually possible yet seems a

bit tedious to do even with a computer. We will instead compare both sides in these steps:

(1) Showing that both sides are meromorphic with the same set of simple poles;

(2) Assisted by a computer, showing that their residues agree (which is significantly

easier than comparing the whole expressions);

(3) Showing that the difference of both sides is a bounded function with value 0 at a

single input, so it must be identically 0.

For details, see § 13.

6. Integral formulas for the tetrahedral symbol

In this section we will give a class of integral formulas for the tetrahedral symbol.

They are based on the interaction between tetrahedral combinatorics and the geometry of

certain R-spaces.

They come in two classes, which can be seen as dual to one another: a vertex integral
which takes as input an R-space X and a collection of R-invariant functions φij : X

2 → ℂ
indexed by (unoriented) edges, and an edge integral which takes as input a R-space Y and

a collection of R-invariant functions ψi : Y
3 → ℂ indexed by vertices. These are given,

respectively, by

I
V(X,φ) :=

∫
R\XV

∏
ij∈E

φij(xi, xj), and I
E(Y,ψ) :=

∫
R\YE

∏
i∈V

ψi(yij, yik, yil).

In both forms, the group R acts on XV
or YE

diagonally, and the integrands are R-

invariant. The symmetry between the two constructions is a little clearer if we describe

the situation in words: To each X-labelling of vertices, i.e. “tetrahedra in X,” we can attach

a number, namely, the product over edges e, of the values of φe on vertices incident with

11
In principle we might try to use the hypergeometric formula as well, but but the vertex formula seems

to be easier to work with for this purpose.
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e. We obtain I
V

by integrating this number over the space of X-labellings of vertices. For

I
E

we just switch Xwith Y, vertices with edges, and φwith ψ.

6.1. Vertex formula for R compact. The following vertex formula, valid for R compact,

was already given by Wigner.

Proposition 6.1.1 (Wigner). Suppose thatR is compact. Then {Π}
2 is the vertex integral I

V(X,φ)

associated to X = R and φij(gi, gj) the character of πij evaluated at gig−1j :

{Π}
2 =

∫
RV

∏
ij∈E

Tr ◦πij(gig−1j ).

Proof. We follow the notation of § 3.4.1. Let δ ∈ ΠG represent the contraction mapping, so

that (v, δ) = ⟨v⟩ for all v ∈ V . By definition, {Π} = (V, δ). Now, for any vector v,wwe have

(V, v)(V,w) =

∫
h∈H

(hv,w),

for both sides determine H × H-invariant functionals on ΠG ⊗ ΠG with the same value 1

at V ⊗ V . Substitute v = w = δ to find:

{Π}
2 =

∫
H

(hδ, δ).

However, Lemma 6.1.2 below implies that for h = (gi)i∈V, we have

(hδ, δ) =
∏
ij∈E

Tr ◦πij(gig−1j ),

which readily implies the desired formula. ∎

Lemma 6.1.2. SupposeW is a finite-dimensional complex vector space equipped with a nondegen-
erate symmetric pairing (−,−). Let δ ∈W⊗W represent the pairing, so that (δ, v⊗w) = (v,w).
Then

(Aδ, δ) = Tr(A)

for any endomorphism A ofW.

Proof. Fix an orthonormal basis ek with respect to the self-pairing (−,−). Then δ =∑
k ek ⊗ ek and

(Aδ, δ) =
∑
k

(Aek, ek) = Tr(A),

as claimed. ∎

6.2. Vertex formula for F nonarchimedean and π unramified. Suppose now that R is

noncompact and the πij are unramified principal series (see § 5.2) induced from χij. In

this case, each πij admits a one-dimensional space of vectors invariant under the maximal

compact subgroup

K ⊂ R.
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Explicitly, in the non-archimedean case, with reference to an isomorphism R ≃ PGL2(F),

we have K ≃ PGL2(O). We will henceforth assume that F is nonarchimedean; the discus-

sion below goes over in the archimedean case with minor modifications.

We shall describe a class of vertex formulas, valid for such representations. Take X to

be R/K where K is as above. Fix vij ∈ πij a nonzero K-fixed vector normalized so that

(vij, vij) = 1; this is possible because, again, the symmetric pairing is positive definite on a

real structure. Therefore vij is uniquely specified up to sign. Now defineφij = X×X −→ ℂ
by the rule

φij(giK, gjK) = (givij, gjvij).

This is the “spherical function for πij”.

Proposition 6.2.1. With the notations above, we have (up to sign){
χ12 χ13 χ14

χ34 χ24 χ23

}
=

L(1, ad)

L(2)8
√
L(1
2
, S)
· IV(X,φ)

=
L(1, ad)

L(2)8
√
L(1
2
, S)
·
∫
gi∈RV

∏
ij∈E

(givij, gjvij)

 ,
where, on the right-hand side, we take counting measure on the discrete set X, and put on R the
measure for which the volume of K equals 1, S is as in § 5.1, and

L(1, ad) =
∏
ij∈E

L(1)L(1, χ2ij)L(1, χ
−2
ij ),

and recall the convention that L(s) is the value of the L-function for the trivial character at s.

Remark 6.2.2. In words, Proposition 6.2.1 asserts that (up to the normalizing factors) we

obtain the tetrahedral symbol by integrating over “moduli of tetrahedra in X” the product

of spherical functions labeled by the edges. Note that it implies that there is a coherent

sign choice for the normalized tetrahedral symbol when the πs vary through unramified

representations.

Proof of Proposition 6.2.1. Again we follow the notation of § 3.4.1. Let

v =
⊗
ij∈E

(vij ⊗ vij) ∈ ΠG.

We shall compute separately ΛH(v) and (ΛH) ′(v). By definition,

(ΛH) ′(v) =

∫
R\H

(givij, gjvji) =

∫
R\XV

∏
ij∈E

φij(xi, xj) = I
V(R/K,φ).

On the other hand, ΛH(v) must be evaluated by hand. It is known (a special case of

[II10, Theorem 1.2], or an easy if rather tedious computation in the case at hand) that

ΛH(v) = L(2)8

√
L(1
2
, S)

L(1, ad)
. (6.2.1)
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Comparing this with the definition (ΛH) ′ = {Π}ΛH, we arrive at the claimed formula. ∎

The same reasoning also works in the case of F archimedean, but we do not know a

reference for the computation (6.2.1) there.

6.3. Edge formula for principal series. The edge formula will be applicable to the case

of the split R and the πij principal series induced by character χij, for which we retain the

notations from § 5.1.

We take Y = ℙ1F. The ψi will not be functions on Y × Y × Y itself, but rather sections

of certain line bundles — they will be functions on F2 × F2 × F2, with certain degrees of

homogeneity in each factor. Their product will define a (−2)E
-homogeneous function on

(F2)E
, i.e. a density — this can be integrated over YE ≃ (ℙ1F)E

as explained in § 2.4.

The functions ψi are defined (as sections of suitable bundles) on that open subset of YE

where adjacent edges are assigned distinct labels (in Y), as follows:

ψi = ψ
j
iψ
k
iψ

l
i,

where {i, j, k, l} = V and

ψli := χ
l
i−

(
yij ∧ yik

)
= (χli| · |−

1
2 )
(
yij ∧ yik

)
, and χli :=

χijχik

χil
.

Here we write x ∧ y, for x, y ∈ F2, for the determinant of the 2 × 2 matrix with x as first

row and y as second row. This introduces a sign ambiguity in the definition of ψli due to

the order of j and k. There is a “good” way to make such a choice; we will suppress this

for now, but for details we refer the reader to Lemma 11.6.1.

Proposition 6.3.1. With the notations above, we have

{Π}

√
γ
(1
2
, S−

)
= ν−2ℙ I

E(ℙ1F, ψ)

= ν−2ℙ

∫
R\(ℙ1)E

∏
il∈O

(
χijχik

χil
| · |− 1

2

)(
yij ∧ yik

)
, (6.3.1)

where νℙ is as in (3.2.3). The integrals are absolutely convergent for χ unitary. (Note that the
second expression is simply the explication of the notation; in it, jk ∈ E is the opposite edge to that
defined by il.)

An outline of the proof towards this formula will be sketched shortly in § 6.4, and the

details will be contained in § 11.

Although (6.3.1) is compact, it is a little opaque, so we offer two different reinterpreta-

tions of it. The first will be given now, and the second in § 7. This first interpretation will

also help us see that the formula is absolutely convergent when ψ is unitary.

6.3.2. Interpretation of (6.3.1) in terms of moduli of six points on the projective line. Let us

consider the space M◦
of configurations of six points on ℙ1 indexed by E where the points

indexed by incident edges are distinct (thus, the points indexed by opposite edges may
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collide). PGL2 acts freely on this space, and upon taking the quotient we arrive at a moduli

space

M◦ = M◦/PGL2,

which more concretely amounts to configurations of three points with certain distinctness

properties, see (6.3.3) below.

We first define a section Ω of the square of the canonical sheaf ω2 on M◦
. First of all,

consider the formula

ΩM =
(
∧
e dxe)

2∏
e̸=e ′(xe − xe ′)

, (6.3.2)

where e, e ′ range over pairs of edges sharing a vertex; the overall sign depends on the

ordering in the numerator, but this will not matter for us. It defines a section of the square

ω2 of the canonical bundle, on the open subset of M◦
where the xe actually lie inside

𝔸1 ⊂ ℙ1. This section, however, extends to M◦
. The form ΩM is PGL2-invariant, and we

can “divide it” by the square of the fixed algebraic volume form on PGL2 (see (3.2.2)) to

arrive at a corresponding sectionΩ of the square of the canonical sheaf on M = M/PGL2

itself.

Remark 6.3.3. For later use we explicate both M◦
andΩ. We may identify

M◦ ≃ {(x, y, z) ∈ ℙ1 : x ̸= y, y ̸= z, x /∈ {1,∞}, y /∈ {∞, 0}, z /∈ {0, 1}} (6.3.3)

To do so, we use the PGL2-action to identify M◦
with the subset of M◦

where x14 =

0, x13 = 1, x23 = ∞, and take x = x12, y = x24, z = x34 for the remaining coordinates. Upon

comparing (6.3.2) with (3.2.2), we deduce that the formΩ is given by

Ω =
(dx∧ dy∧ dz)2

xyz(x− y)(y− z)(1− z)(1− x)
. (6.3.4)

Next, we define a morphism

µ : M◦ → ˜D6 ⊗ 𝔾m
≃ 𝔾6

m
,

by requiring that, for ij ∈ O, the ij coordinate of µ is given by the following rule: move

xij to ∞ by means of a projective transformation, and then set

µij =
xa − xb
xc − xd

, (6.3.5)

where the three distinct edges a, b, e meet at i and the three distinct edges c, d, e meet at

j. Again, there are choices of ordering here; we make them so that µijµji = 1. This is not

unique, but different choices only affect the µijs by a sign.

Now |Ω|
1
2 makes sense as a a volume form on M◦(F) for F a local field, so long as we fix

a Haar meausre on F.12

This permits us to state the following:

12
Indeed, for each point x0 ∈M◦(F)we choose an analytic isomorphismΦ : U ≃ Ux0 from an open subset

U ⊂ Fn onto an analytic neighbourhood Ux0 of x0 in M◦(F); analytic means that it is given by convergent

F-valued power series. The pullback ofΩ by means of this form has the shapeA(z1, . . . , zn)(dz1∧· · ·∧dzn)
2
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Proposition 6.3.4. We have an equality, up to sign,

I
E(ℙ1F, ψ) = νℙ

∫
M◦(F)

∏
i<j

χij(µij(x)) · |Ω|
1
2 (6.3.6)

where νℙ is as in (3.2.3), µ is as in (6.3.5) and µij is the coordinate of µ corresponding to ij ∈ E.

Proof. This is simply a rewriting of the second line of (6.3.1). In carrying out this verifica-

tion, it is convenient to use a more intrinsic formulation of (6.3.5): if xij are homogeneous

coordinates of ℙ1 corresponding to ij, then

µij =
(xij ∧ yi)(xij ∧ zi)(yj ∧ zj)

(xij ∧ yj)(xij ∧ zj)(yi ∧ zi)

where yi, zi (resp. yj, zj) correspond to the edges other than ij connected to i ∈ V (resp. j ∈
V); we recover our prior description by moving xij to∞. Yet again, the sign of these wedges

above is of no concern to us. Finally, the factor νℙ comes from the fact that in I
E(ℙ1F, ψ)

we used the Haar measure on R rather than the measure induced by (ℙ1)3 to define the

measure on R\(ℙ1)E
. ∎

With this intepretation at hand, we will prove the convergence claim of Proposition 6.3.1

in § 10.2.

6.4. Outline of the argument for (6.3.1). The proof requires us to be careful about iso-

morphisms between different models for the same representation, in a way that will seem

excessively pedantic. However this is the price we pay for having a very short definition

of the symbol: complexity gets transferred to the set-up phase of computations.

For each ij ∈ O, let πij be the induced representation from χij; it is realized in the space

of sections of a line bundle on ℙ1, as described in detail in § 11.2. Note that πij ̸= πji,

but they are isomorphic; in fact, by definition of the principal series model, the fact that

χijχji = 1will give rise to a natural pairing

πij × πji −→ ℂ.

Fix a splitting E → O, that is to say, a choice of orientation of each edge. For each

such chosen orientation ij ∈ O, we fix a symmetric pairing on πij and an isomorphism

Ie : πij → πji, and we transport the symmetric pairing from πij to πji by means of the fixed

isomorphism Ie.

Put

ΠG =
⊗
ij∈O

πij =
⊗
ij∈E

(πij ⊗ πji),

Π ′
G =

⊗
ij∈E

(πij ⊗ πij),

for an analytic function A. The integral of f over the analytic neighbourhood Ux0 is then declared to be the

integral of (f ◦Φ)× |A|
1
2 against Haar measure on U.
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where we use the splitting to choose an ordering in the second definition. Both ΠG, Π
′
G

are endowed with symmetric self-pairings arising from those on πij. The representa-

tions Π ′
G and ΠG, together with these pairings, are isomorphic by means of the chosen

isomorphisms Ie:

I = ⊗Ie :
(
Π ′
G, (−,−)

) ∼−→
(
ΠG, (−,−)

)
.

Our definition of the tetrahedral symbol is expressed in terms of Π ′
G. But unfortunately

the contraction functional does not look nice in the natural induced model for Π ′
G. This

problem is remedied by switching to ΠG instead: it is realized as the space of sections of a

line bundle on (ℙ1)O
; and aD-invariant functional ϕD on ΠG given simply by integration

over the “diagonal” (ℙ1)E
, i.e. the closedD-orbit, whereas anH-invariant functionalϕH on

ΠG is given by integration over the openH-orbit on (ℙ1)O
. After computing the constant of

proportionality relating I∗ϕH and ΛH, as well as the constant of proportionality relating

I∗ϕD and ΛD we are reducing to answering the question: when we average ϕD over H,

which multiple of ϕH do we get?

When we average ϕD over H, we in effect are pushing forward by means of the map

H× (ℙ1F)
E −→ (ℙ1F)

O.

From this analysis, it follows that {Π} is an integral over the fibers of this map. Now,

the projection map from a general fiber onto (ℙ1F)E
is readily verified to be a birational

morphism. This gives us an expression for {Π} as an integral over (ℙ1F)E
. After we work

out the details in § 11 we get (6.3.1).

7. Hypergeometric formulas for the tetrahedral symbol

In this section, R is split and πij are irreducible principal series. We will describe

formulas for the tetrahedral symbol of hypergeometric type (Theorem 7.2.1), and in the

case F = ℝ we will simplify the resulting formula to a sum of 4F3 hypergeometric series

evaluated at the special point z = 1.

7.1. Hypergeometric functions on Grassmannians. Now let k < n be integers. Let

χ = (χ1, . . . , χn) be n characters of F× with the property that∏
i

χi = | · |−k.

Let X ⊂ Fn be a k-dimensional subspace. Then the integral∫
ℙX
χ :=

∫
ℙX

∏
i

χi(xi). (7.1.1)

makes sense at least formally, as the function is −k homogeneous and can be integrated

over the projective space ℙX, according to the general procedure of § 2.4. Such functions

for F = ℝ were studied by Aomoto, Gelfand and others. They can be considered as
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generalizations of Gauss’s hypergeometric function, which corresponds to the case when

k = 2, n = 4, and X is spanned by the rows of the matrix[
1 0 1 1

0 1 1 t

]
where t ∈ ℝ is a fixed parameter.

7.2. The hypergeometric formula for the tetrahedral symbol. Now let X be the subspace

of F8 (so that k = 4, n = 8) of the form

X = (x− y, y− z, z−w,w− x, x, y, z,w) ⊂ F8,

and define an 8-tuple of quasicharacters

χ =
(
χ3

2−, χ
1
4−, χ

2
3−, χ

4
1−, χ

3
1−, χ

3
4−, χ

2
4−, χ

2
1−
)
,

where we use notation similar to that of § 6.3:

χli :=
χijχik

χil
.

and recall the subscript “−” means that we multiply by | · |− 1
2 .

Theorem 7.2.1. Let χ ∈ X0, with the notations of (5.2.1), and let X and χ be as above. Then the
tetrahedral symbol associated to χ can be expressed as a hypergeometric integral, where we integrate
χ over the projectivization of X:{

χ12 χ13 χ14

χ34 χ24 χ23

}
·
√
γ
(1
2
, S−

)
= ν−1ℙ

∫
ℙX
χ, (7.2.1)

and both sides are absolutely convergent for χ ∈ X0.

Proof of Theorem 7.2.1 from Proposition 6.3.4. The right-hand side of (7.2.1), aside from the

factor ν−1ℙ , is the following integral:∫
[x,y,z,w]∈ℙ3(F)

χ3
2−(x− y)χ

1
4−(y− z)χ2

3−(z−w)χ
4
1−(w− x)χ3

1−(x)χ
3
4−(y)χ

2
4−(z)χ

2
1−(w).

which, more explicitly, turns into the following, upon de-homogenization and expansion:∫
F3
χ3

2−(x− y)χ
1
4−(y− z)χ2

3−(z− 1)χ
4
1−(1− x)χ

3
1−(x)χ

3
4−(y)χ

2
4−(z)dxdydz

=

∫
F3
χ12

(
x(1− x)

x− y

)
χ13

(
1− x

x(z− 1)

)
χ14

(
x(y− z)

(1− x)yz

)
χ23

(
z− 1

x− y

)
χ24

(
(x− y)z

y(y− z)

)
χ34

(
y(z− 1)

z(y− z)

)
|xyz(x− y)(y− z)(z− 1)(1− x)|

− 1
2
dxdydz. (7.2.2)
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This amounts to the explicit content of Proposition 6.3.4, once we use the explicit coordi-

nates provided by Remark 6.3.3, drawn as below:

1

4

2 3

x

0

∞
y z

w
(7.2.3)

Examining the labelling from this remark, we readily verify that the arguments of the χij
are just the µij from Proposition 6.3.4. ∎

7.3. The tetrahedral symbol as a convolution of γ-functions. The following striking

formula can be derived, after some manipulation, from Theorem 7.2.1, and uses the same

notation (we also remind the reader of the notations in § 2.2.5):

Proposition 7.3.1. Abridge ρij = {χij, χji}, Define four-element subsets A,B of characters as,
respectively, the union of χ41 ⊗ ρ12 and χ23 ⊗ ρ43, and the union of ρ13 and χ23χ41 ⊗ ρ24. Then{

χ12 χ13 χ14

χ34 χ24 χ23

}
=
ν−1ℙ

∫
µ
γ(1
2
+ ϵ,A⊗ µ)γ(1− ϵ, B−1 ⊗ µ−1)dµ√

γ(1
2
, A⊗ B−1)

, (7.3.1)

where µ ranges over characters of F×, whereas ϵ is any complex number with real part between 0
and 1

2
.

The proof will be given in § 14.5.

7.4. The case F = ℝ: expression in terms of 4F3. Using Mellin transform, we can relate

the tetrahedral symbol to generalized hypergeometric series. For simplicity, we assume

χ12 = | · |J𝟙 , χ31 = | · |J𝟚 , χ14 = | · |J𝟛 ,
χ34 = | · |J𝟜 , χ24 = | · |J𝟝 , χ23 = | · |J𝟞 ,

where J𝟙, . . . , J𝟞 ∈ ℂ. Here, we choose χ31 instead of χ13 only because in (4.3.1) the

blackbold 𝟚 is the label of 31; the orientations themselves have no impact here. The

general case can be derived with the same method, but we only give explicit statement

about this special case. We use shorthands such as J ¯𝟙𝟚𝟛 = −J𝟙+J𝟚+J𝟛, J𝟚𝟛𝟝𝟞̄ = J𝟚+J𝟛+J𝟝−J𝟞,

and so on.

Then in § 14.6 we will show that we can express the tetrahedral symbol as a sum of 4F3s

in two different ways:

{Π}

√
L
(1
2
, S
)
= −

L(1
2
, S∗1)

γ(J𝟚̄𝟛̄𝟝̄𝟞)γ(J𝟚̄𝟛̄𝟝𝟞)γ(J𝟚̄𝟚̄)
4F3

(
J ¯𝟙𝟚𝟛 +

1
2
, J𝟙𝟚𝟛 +

1
2
, J𝟚𝟜𝟞̄ +

1
2
, J𝟚𝟜̄𝟞̄ +

1
2

J𝟚𝟛𝟝𝟞̄ + 1, J𝟚𝟛𝟝̄𝟞̄ + 1, J𝟚𝟚 + 1

∣∣∣ 1)
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−
L(1
2
, S∗2)

γ(J𝟚𝟛𝟝𝟞̄)γ(J𝟝𝟝)γ(J𝟚̄𝟛𝟝𝟞̄)
4F3

(
J ¯𝟙𝟝̄𝟞 +

1
2
, J𝟙𝟝̄𝟞 +

1
2
, J𝟛̄𝟜𝟝̄ +

1
2
, J𝟛̄𝟜̄𝟝̄ +

1
2

J𝟚̄𝟛̄𝟝̄𝟞 + 1, J𝟝̄𝟝̄ + 1, J𝟚𝟛̄𝟝̄𝟞 + 1

∣∣∣ 1)
−

L(1
2
, S∗3)

γ(J𝟚𝟛𝟝̄𝟞̄)γ(J𝟝̄𝟝̄)γ(J𝟚̄𝟛𝟝̄𝟞̄)
4F3

(
J ¯𝟙𝟝𝟞 +

1
2
, J𝟙𝟝𝟞 +

1
2
, J𝟛̄𝟜𝟝 +

1
2
, J𝟛̄𝟜̄𝟝 +

1
2

J𝟚̄𝟛̄𝟝𝟞 + 1, J𝟝𝟝 + 1, J𝟚𝟛̄𝟝𝟞 + 1

∣∣∣ 1)
−

L(1
2
, S∗4)

γ(J𝟚𝟚)γ(J𝟚𝟛̄𝟝̄𝟞)γ(J𝟚𝟛̄𝟝𝟞)
4F3

(
J ¯𝟙𝟚̄𝟛 +

1
2
, J𝟙𝟚̄𝟛 +

1
2
, J𝟚̄𝟜𝟞̄ +

1
2
, J𝟚̄𝟜̄𝟞̄ +

1
2

J𝟚̄𝟚̄ + 1, J𝟚̄𝟛𝟝𝟞̄ + 1, J𝟚̄𝟛𝟝̄𝟞̄ + 1

∣∣∣ 1) ,
and

{Π}

√
L
(1
2
, S
)
= +

L(1
2
, S∗1 ′)

γ(J𝟙𝟙)γ(J𝟙𝟛̄𝟜𝟞)γ(J𝟙𝟛̄𝟜̄𝟞)
4F3

(
J ¯𝟙𝟚𝟛 +

1
2
, J ¯𝟙𝟝̄𝟞 +

1
2
, J ¯𝟙𝟝𝟞 +

1
2
, J ¯𝟙𝟚̄𝟛 +

1
2

J ¯𝟙 ¯𝟙 + 1, J ¯𝟙𝟛𝟜̄𝟞̄ + 1, J ¯𝟙𝟛𝟜𝟞̄ + 1

∣∣∣ 1)
+

L(1
2
, S∗2 ′)

γ(J ¯𝟙 ¯𝟙γ(J ¯𝟙𝟛̄𝟜𝟞)γ(J ¯𝟙𝟛̄𝟜̄𝟞)
4F3

(
J𝟙𝟚𝟛 +

1
2
, J𝟙𝟝̄𝟞 +

1
2
, J𝟙𝟝𝟞 +

1
2
, J𝟙𝟚̄𝟛 +

1
2

J𝟙𝟙 + 1, J𝟙𝟛𝟜̄𝟞̄ + 1, J𝟙𝟛𝟜𝟞̄ + 1

∣∣∣ 1)
+

L(1
2
, S∗3 ′)

γ(J ¯𝟙𝟛𝟜̄𝟞)γ(J𝟙𝟛𝟜̄𝟞)γ(J𝟜̄𝟜̄)
4F3

(
J𝟚𝟜𝟞̄ +

1
2
, J𝟛̄𝟜𝟝̄ +

1
2
, J𝟛̄𝟜𝟝 +

1
2
, J𝟚̄𝟜𝟞̄ +

1
2

J𝟙𝟛̄𝟜𝟞̄ + 1, J ¯𝟙𝟛̄𝟜𝟞̄ + 1, J𝟜𝟜 + 1

∣∣∣ 1)
+

L(1
2
, S∗4 ′)

γ(J ¯𝟙𝟛𝟜𝟞)γ(J𝟙𝟛𝟜𝟞)γ(J𝟜𝟜)
4F3

(
J𝟚𝟜̄𝟞̄ +

1
2
, J𝟛̄𝟜̄𝟝̄ +

1
2
, J𝟛̄𝟜̄𝟝 +

1
2
, J𝟚̄𝟜̄𝟞̄ +

1
2

J𝟙𝟛̄𝟜̄𝟞̄ + 1, J ¯𝟙𝟛̄𝟜̄𝟞̄ + 1, J𝟜̄𝟜̄ + 1

∣∣∣ 1) .
Here S∗1, . . . , S

∗
4 and S∗1 ′, . . . , S∗4 ′ are certain slightly modified versions of S− (details in

§ 14.6). For generic J𝟙, . . . , J𝟞, the eight 4F3s on both right-hand sides turn out to be

absolutely convergent at 1 and so the expressions are well-defined. See, also, § 9.4 for a

discussion of related results in the literature.

In particular, our results imply that there exists a 4-term combination of 4F3s whose value at
1 satisfiesW(D6)-symmetry. We have not been able to find this statement in the literature; it

fits in a broader patterm of extra symmetry enjoyed by evaluations of generalized hyper-

geometric series, cf. [FGS11]. In this connection, we observe that the Thomae symmetry

of 3F2 hypergeometric series is, in the same fashion, related to the Regge symmetries of 3j

symbols.

8. Langlands duality; the tetrahedral symbol as an interface

We now sketch a picture that is Langlands dual to the tetrahedral symbol. It does not

shed much light on the proofs, and it may seem as if we are simply translating into an

arcane tongue. But it was instrumental to the discovery of our results; it brings out the role

of the group Spin12 rather than merely its maximal torus and Weyl group; and, although

we do not pursue it here, this language suggests natural avenues of generalization.

8.1. Tetrahedral symbol via a correspondence. First of all, let us explain how the defini-

tion of the tetrahedral symbol is a special case of an invariant attached to a correspondence

between spherical varieties. Recall the notation of (3.2.1):

G = RO, D = RE, H = RV,

so that G ≃ R12, D ≃ R6, H ≃ R4. Let X, Y be the corresponding homogeneous spaces:

X = D\G, Y = H\G.
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LetC∞(X) (resp.C∞(Y)) be the space of smoothℂ-valued functions onX (resp. Y). We also

regard elements in C∞(X) as functions on G that areD-invariant on the left, and similarly

for C∞(Y). With ΠG as defined in § 3.3, we consider the diagram of G-representations

C∞(X)

ΠG

C∞(Y)

Av

ΛX

ΛY

(8.1.1)

where the morphisms of ΠG into C∞(X) and C∞(Y) are “distinguished” embeddings,

which is to say that their values at the identity coset are given by the normalized functionals

ΛD, ΛH that were specified earlier; the vertical map is the averaging integral:

Av(f)(x) =

∫
(D∩H)\H

f(hx)dh.

The Haar measure is fixed as in the beginning of the paper, and we assume that Av

converges absolutely on the image of ΠG (which turns out to be true for tempered Π). We

can reinterpret the tetrahedral symbol {Π} as describing the scalar by which this diagram fails
to commute.

8.2. Interface and its dual. The key ingredients in the above definition are two spaces

X, Y and the correspondence

X←− Z −→ Y

where Z := (D ∩ H)\G; the averaging operator amounts to pulling-back and pushing-

forward along this diagram. Now an important theme of relative Langlands duality is

that, in order to achieve symmetry between automorphic and Galois sides, it is convenient

to switch to symplectic geometry, i.e. to re-code spaces by their cotangent bundles. From

this point of view we should replace X and Y by M = T
∗X,N = T

∗Y and replace Z by the

Lagrangian correspondence
L := conormal to Z ⊂M×N.

In the language of [BZSV24], this defines an interface between the hyperspherical varieties

M and N, and it is reasonable to search for a dual interface

Ľ ⊂ M̌× Ň,

where M̌, Ň are the respective relative Langlands duals for M,N. The paper [BZV] does

this for various naturally arising classes of L; however, in all examples of that paper, both

L and Ľ are smooth. The tetrahedral symbol offers one of the first interesting cases where

this is not so.

The dual group of G is

Ǧ = SL2(ℂ)O ≃ SL2(ℂ)12.
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Consider also the dual Ď = SL
E
2 ≃ SL2(ℂ)6 which we regard as a subgroup of Ǧ in the

obvious way, i.e., corresponding to the map O → E where we forget orientation. (Note

that, in general, an embeddingD ⊂ G does not induce an embedding of dual groups; but

in the current case we just use the obvious embedding.)

According to relative Langlands duality, the Hamiltonian varieties M = T
∗X and N =

T
∗Y are respectively dual to the Ǧ-spaces

M̌ = T
∗(Ǧ/Ď), Ň ≃

⊕
i∈V

ℂ2ij ⊗ ℂ2ik ⊗ ℂ2il.

In fact, Ň is the pull-back of a half-spin representation S of Spin12 by means of the

homomorphism

τ : Ď = SL
E
2 −→ Spin12

that was described in (4.2.1). Note that are two half-spin representation of Spin12, only

one of which restricts to Ň (see § 4.4 for more details). Accordingly it makes sense to

consider within Ň the cone P ⊂ S ≃ Ň of pure spinors. The reader can refer to § 13.2 for

a description of P as a subvariety of S.

We are now ready to describe what we think is the picture in relative Langlands duality

that underlies the theory of the tetrahedral symbol.

Key proposal: The dual interface to the tetrahedral symbol is the induction

of the cone of pure spinors P ⊂ Ň from Ď to Ǧ:

Ľ = Ǧ×Ď P. (8.2.1)

where the projection from Ľ toM̌ factors through the zero section Ǧ/Ď→ M̌,

and the projection to Ň is given by (g, v) 7→ gv.

This picture, for example, “explains” Theorem 5.2.1, in a sense discussed further in § 9.6

and § 9.7.

9. Further topics

What we have proved in this paper gives, we think, a deeper context for the Regge

symmetry of the classical 6j symbols. However, the classical 6j symbols has many other

beautiful properties too, and it would be interesting to study these from the point of view

taken in this paper. We will give a brief discussion of a few such points here.

The classical 6j symbol plays a distinguished role in the theory of orthogonal polyno-

mials: it gives the most general class of orthogonal polynomials in the Askey scheme of

orthogonal-hypergeometric polynomials. See [Lab85, Koo88]. Classical orthogonal poly-

nomials satisfy both orthogonality relations and difference equations; and in § 9.1 and

§ 9.2 we discuss, respectively, the orthogonality and difference equations that hold in the

context of this paper.

Secondly, the tetrahedral symbol has played an important role in analytic number theory

(although apparently this connection has not been explicitly made previously). In the first-

named author’s work on the subconvexity problem for L-functions, a key role was played
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by a certain spectral reciprocity formula relating two sums of L-functions. In this formula,

as observed in [MV10], there is a somewhat mysterious integral transform. This is, as

we shall sketch in § 9.3, precisely the integral transform associated by the two-variable

function obtained by fixing four of the six inputs to the tetrahedral symbol.

The relationship of the tetrahedral symbol to relative Langlands duality could be more

deeply understood in many ways. In § 9.5 we use the general formulation of Langlands

duality to discuss the situation beyond the principal series case. In § 9.6 we formulate a

conjecture relating the tetrahedral symbol to the representation theory of Spin12, and in

§ 9.7 we discuss associated questions in geometric representation theory.

We do not touch on another important role of the 6j symbol: namely, its role in the

Turaev–Viro [TV92] invariant of 3-manifolds; it would be interesting to look at this, too,

from the dual viewpoint.

As this section is primarily meant to serve as a source of motivation for futher work, we

will not always give full details, particularly around issues of convergence.

9.1. Orthogonality. Like many classical special functions, the tetrahedral symbol has

remarkably rigid orthogonality properties.

Fix a pair of opposite edges of the tetrahedron: let us take them to be {13, 24} and assign

tempered representations to the remaining 4 edges. We can then regard the tetrahedral

symbol as a function of σ = π13, τ = π24, which we denote by {Π}στ, and which we will

regard as a function

P0 × P0 −→ ℂ,
(σ, τ) 7−→ {Π}στ,

where we recall that P0 is the tempered dual of R, i.e. the set of irreducible tempered

representations up to isomorphism.

The support of this function is a direct product, i.e. if {Π}σ0τ0 and {Π}σ1τ1 are nonzero,

then {Π} is not identically zero on the component of P0 × P0 containing (σ0, τ1). Indeed,

the condition for {Π} to be not identically vanishing on the component containing (σ, τ) is

that all four of the R3-representations

π12 ⊗ σ⊗ π14, π32 ⊗ σ⊗ π34, π21 ⊗ τ⊗ π23, π41 ⊗ τ⊗ π43

admit R-invariant functionals.

Now thisP0 has a natural Borel structure; and a choice of Haar measure onRdetermines

upon P0 a canonical measure, the Plancherel measure, characterized by the fact that for a

continuous compactly supported function f on R we have

f(e) =

∫
τ∈P0

Trτ(f)dτ. (9.1.1)

Then the orthogonality is expressed by means of:
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Proposition 9.1.1. The function {Π}στ is the kernel of a unitary transformation:

L2(P
(a)
0 ) −→ L2(P

(b)
0 ),

f 7−→
(
σ 7→

∫
{Π}στf(τ)dτ

)
.

and where P(a)
0 ×P

(b)
0 is the union of all components of P0×P0 on which {Π}στ is not identically

zero.

We sketch a proof in § 15.1. Actually, we will establish a more precise statement, which

we now explain. Set

Σ := π12 ⊗ π23 ⊗ π34 ⊗ π41,

an irreducible representation ofR4. A choice ofσ = π13 andτ = π24 determinesR-invariant

functionals

E13 = Eσ ∈ Σ∗
and E24 = Eτ ∈ Σ∗

(9.1.2)

in the following way. First fix symmetric self-duality pairings on all πij including σ, τ.

Consider first

Σ⊗ σ⊗ σ ≃ (π32 ⊗ π34 ⊗ π13)︸ ︷︷ ︸
πO3

⊗ (π13 ⊗ π14 ⊗ π12)︸ ︷︷ ︸
πO1

We normalize functionals Λ3 on the first factor πO3 and Λ1 on the second factor πO1 by

means of the same recipe as in (3.4.3). To produceEσ, contract in theσ variables to produce

a class in Σ∗
, that is to say, sum over ei⊗ ei ∈ σ⊗σwhere ei is an orthonormal basis with

respect to the fixed symmetric self-pairing on σ; it is presumably not difficult to verify the

convergence of this summation. The construction of Eτ is precisely parallel using instead

Σ⊗ τ⊗ τ ≃ πO2 ⊗ πO4

and forming functionals Λ2, Λ4 on the two factors.

Proposition 9.1.2. There is a natural Hilbert structure on (Σ∗)R with the property that the rules

f 7→
∫
f(σ)Eσdσ, g 7→

∫
g(τ)Eτdτ

extend to isometries

L2(P
(a)
0 ) or L2(P(b)

0 ) −→ Hilbert completion of Σ∗.

Moreover, the two isometries are intertwined by the transformation of Proposition 9.1.1.
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9.2. Difference and differential equations. Specialize to the case F = ℝ; a variant of the

following discussion applies for F = ℂ too. In these cases, like many classical special

functions, the tetrahedral symbol then satisfies a large system of difference equations:

Quasi-characters of F× all have the form x 7→ |x|s or x 7→ sgn(x)|x|s, which we parame-

terize by (−1, s) or (1, s) in {±1} × ℂ respectively. Restricted to principal series, then, the

tetrahedral symbol defines a meromorphic function on(
{±1}× ℂ

)6
Fixing a choice of signs, we get simply a function on ℂ6. This function satisfies a

holonomic system of difference equations, where holonomic means, roughly, that the difference

equation has only a finite-dimensional space of solutions if one imposes suitable growth

constraints. This follows from Proposition 6.3.1, or even more conveniently from its

reformulation in (7.2.2).

Indeed, as we see from (7.2.2), what we are doing is pushing forward Lebesgue measure

from (an open subset of) ℝ3 to (ℝ×)6, by means of the map

(x, y, z) 7→ (x, 1− x, x− y, y− z, z, 1− z),

and taking a Mellin transform of the resulting measure µ. Difference equations for that

Mellin transform correspond to differential equations for the pushforward measure µ; and

that such differential equations exist in plenty follow from the fact that holonomic D-

modules are stable under direct image. See [Oak18] for a very explicit discussion of such

differential equations.

It would not be difficult to explicitly write down these difference equations, for example,

starting with some of our hypergeometric representations. What would be particularly

interesting would be to “index” the resulting system by the geometry of the spinor cone.

9.3. The associativity kernel and analytic number theory. The unitary integral transform

indicated in Proposition 9.1.1 has played a significant role in number theory; we sketch

this in a typical example. We will, for this subsection, freely assume familiarity with the

language of automorphic forms.

Let us fix an anisotropic quadratic form Q over a totally real
13 global field F; let SO3

denote the associated orthogonal group over F. For each place v of F, we let Fv be the

corresponding local field. Let S be a finite set of places.

Now let π12, π23, π34, π41 be automorphic representations of SO3, all of which are unrami-

fied outside the set S. For each v ∈ S, let fv be a continuous function of compact support on

the tempered dual of SO3(Fv). Then we have the “associativity” formula (the terminology

used in [MV10, § 4.5.2]):

∑
π24

L2L4

L(S)(1, π24, ad)

∏
v∈S

fv(π24,v) =
∑
π13

L3L1

L(S)(1, π13, ad)

∏
v∈S

f̌v(π13,v), (9.3.1)

13
This enables us to avoid some irrelevant analytical issues because the Ramanujan conjecture is known.
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where fv ↔ f̌v is the transform of Proposition 9.1.1; the sum is taken over all automorphic

representations π24 or π13, with local constituents π24,v and π13,v that are representations

of SO3(Fv), and

Li =

√
L(S)

(1
2
, πij ⊠ πik ⊠ πil

)
,

where {i, j, k, l} = V, and L(S) means that we take L-factors only outside S. The meaning

of (9.3.1) is that there exists a choice of signs for the various square roots such that it is

valid. Understanding the choice of sign, from the point of view of L-functions, is a very

interesting and rather unexplored question.

We sketch a proof of (9.3.1) here, at least for a class of f. Take factorizable ψi ∈ πi and

expand ∫
ψ1ψ2ψ3ψ4 =

∑
π24

∑
ψ∈π24

∫
ψ1ψ2ψ×

∫
ψψ3ψ4, (9.3.2)

where we sum first over automorphic representations π24 and then over orthogonal bases

for π24; the integrals are over the adelic quotient associated to SO3. Using the Ichino–Ikeda

formula (see [II10] we rewrite this as

c · L2L4 ·
∏
v∈S

E
(v)
24 (ψ1,v ⊗ψ2,v ⊗ψ3,v ⊗ψ4,v)︸ ︷︷ ︸

fv(π24,v)

where c is a constant depending on measure normalization, and the other notation is

as in (9.1.2), with a superscript (v) to remind that we are working with SO3(Fv); note

that E
(v)
24 depends on π24,v and so indeed defines a function fv on the tempered dual of

SO3(Fv). Now, compare this expansion with a similar expansion of (9.3.2) according to

the {14, 23} grouping; one gets a similar structure, now involving a factor f̌v(π13,v) given

by E
(v)
13 (ψ1,v ⊗ψ2,v ⊗ψ3,v ⊗ψ4,v). We conclude by Proposition 9.1.2.

9.4. Tetrahedral and 6j symbols for SU2. There is a significant body of prior work related

to this paper concerning the question of defining 6j symbols for SL2(ℝ) or SL2(ℂ). To our

knowledge, all this work is based on definitions parallel to that of § 9.1 rather than § 3.4.3,

that is to say, realizing 6j symbols as “associativity kernels,” rather than in a fashion that

manifestly has the symmetry of a tetrahedron. We will briefly review some of this work.

Let us first note that, although the map SL2 → PGL2 is almost an isomorphism, the

representation theory has significant differences, because of the failure of multiplicity-

one: given irreducible representations V1 and V2 of SL2 over a local field, the irreducible

representations appearing in the continuous part of V1 ⊗ V2 may have multiplicity 2.

However, there are a number of cases related to SL2 where the multiplicity one holds, in

full or in part:

• The case of SL2(ℂ). Here we have multiplicity-one in general ([Naı̆59]). The 6j

symbols were first defined by Ismagilov [Ism06, Ism07], who gives explicit hyper-

geometric formulas (as a sum of the products of two 4F3 hypergeometric series)

for representations that descend to PGL2(ℂ). Mellin–Barnes integrals for bona
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fide SL2(ℂ)-representations were obtained and further studied by Derkachov and

Spiridonov [DS19].
14

Finally, relations to elliptic hypergeometric functions were

studied in [DSS22].

• The case of SL2(ℝ). Here one does not have multiplicity one in general, but it

remains valid in various situations where some of the representations are discrete

series. Such are the situations studied by Groenevelt [Gro03,Gro06], who expressed

the relevant 6j symbols in terms of Wilson functions, which can be written as the

value at 1 of certain 7F6-function, or an equivalent form of a sum of 4F3-functions.

Note that the latter form may be compared with our results in § 7.4, and one may

ask whether a similar consolidation into 7F6-functions is available.

For some further discussion of how to address such examples within our framework,

see § 9.5.3.

Genuine multiplicity two arises when tensoring two principal series of SL2(ℝ). Such

cases have been studied by Derkachov and Ivanov [DI23]; the definition implicitly depends

on the choice of bases for various multiplicity spaces (cf. [Iva18]). It would be interesting

to analyze this from the point of view of relative Langlands duality, which indeed suggests

in many instances the existence of preferred bases for multiplicity spaces.

9.5. The local Langlands correspondence. The local Langlands correspondence permits

a generalization of our prior notions of γ, L, and ϵ-factors, which seem well adapted to

the general study of the tetrahedral symbol.

Let F be a local field. Attached to F is a certain modification of the Galois group, the

Weil–Deligne groupWF of F ([Del73, § 8.3.6]). All that is important for us now is that there

is a canonical isomorphism

Wab

F ≃ F×

and so characters of F× can also be considered as characters ofWF; we will do this without

comment. Now, given a representation

ρ : WF −→ GLn(ℂ)

we can define γ-factor γ(s, ρ), the L-function L(s, ρ), and the ϵ-factor ϵ(s, ρ), each mero-

morphic function of a complex variable s. In the case when ρ is one-dimensional, and

therefore a quasi-character ofWab

F ≃ F×, they coincide with the prior definitions from § 2.2.

They also satisfy a relation analogous to (2.2.3), replacing now χ−1 by the contragredient.

In the general case, L(s, ρ) always has the form

∏m
i=1 L(s, χi) for various characters χi, and

ϵ(s, ρ) always has the form a · bs, but m can be smaller than n, and the values of a, b are

in general difficult to determine.

The significance of the representation theory of WF comes from the local Langlands
correspondence; it asserts that there is a map π 7→ ρπ from irreducible representations of R,

14
We expect that it would be straightforward to check that their formula agrees with the ones in § 7, but

we have not done so.
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to representations

ρ : WF −→ SL2(ℂ), (9.5.1)

where SL2(ℂ) is the Langlands dual group to R. The representation ρπ is also called the

Langlands parameter of π. For example, if π is the principal series attached to a character

χ of F×, the corresponding representation is given by ρ = χ ⊕ χ−1 where we identify χ

with a character of WF through Wab

F ≃ F×. The map that associates to π its Langlands

parameter is injective.

The tetrahedral datum Π of § 3.3 gives rise to a parameter ρΠ : WF → SL
E
2, and this can

be composed with the map τ : SL
E
2 → Spin12 in (4.2.1) to obtain a map

ρ
Spin

Π : WF −→ Spin12.

One aspiration that underlies much of this paper is to

Express the theory of the tetrahedral symbol {Π} entirely in terms of ρSpin

Π .
Our main theorem Theorem 5.2.1 has accomplished this in the unramified case. We will

give now some further examples in this direction.

9.5.1. Components on which {Π} vanishes identically. The inclusion of the center {±1} ↪→ SL2

induces

Z := {±1}E −→ Spin12,

whose image commutes with ρ
Spin

Π . By a general construction of Gross and Prasad, ex-

plained in [GP92, § 10], we obtain from this a character

ψ : Z→ ℂ×,

namely, we associate to each z ∈ Z the ϵ-factor ϵ(1
2
, Sz=−1) for the action ofWF, acting via

ρ
Spin

Π , on the (−1)-eigenspace of z ∈ Z acting on the half-spin representation.

Lemma 9.5.2. If a nontrivial functional ΛH as in § 3.4.3 exists, ψ is trivial. Conversely, if ψ is
trivial for a given ρ :WF → SL

E
2, then there exists ΠG with Langlands parameter ρ (possibly after

replacing R by the isometry group of a different quadratic form) for which ΛH is nontrivial.

Proof. To checkψ is trivial, it is enough to check that its value on the ij copy of −1 is trivial.

The (−1)-eigenspace for this element is given, as a representation of SL
E
2, by(

ℂ2ij ⊗ ℂ2ik ⊗ ℂ2il
)
⊕
(
ℂ2ji ⊗ ℂ2jl ⊗ ℂ2jk

)
,

where {i, j, k, l} = V. Therefore, the condition is that

ϵ
(1
2
, ρij ⊗ ρik ⊗ ρil

)
= ϵ

(1
2
, ρji ⊗ ρjl ⊗ ρjk

)
and since this holds for each i, jwe find that the value of ϵ(1

2
, ρij⊗ρik⊗ρil) is independent

of i ∈ V. We now apply the beautiful result of Prasad [Pra90] characterizing trilinear

invariant functionals. ∎
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9.5.3. Generalization to SL2 from the point of view of Langlands parameters. Let us sketch an

approach, within our framework, of how to extend the tetrahedral symbol to the SL2 case,

and how it fits with the duality formalism. The key role is played by the algebraic group

G∗ = SL
E
2/Z

′,

where the subgroup Z ′ ⊂ Z = (±1)E
of order 8 within the center of SL

E
2 consists of

those elements whose product around each face is trivial. Equivalently, Z ′
is generated by

elements which are nontrivial around a given vertex

The dual group G̃∗
has a remarkably similar description, but now one quotients SL2(ℂ)E

now by those elements whose product around each vertex is trivial. The morphism τ does

not descend to G̃∗
, but the action of SL2(ℂ)E

on the half-spin S does. What this means is

that, given a parameter

WF → G̃∗
(9.5.2)

one still define a representation of WF on S, even though one cannot define in general a

Spin12-valued representation of it. A parameter (9.5.2) gives in particular an L-packet of

representations of SL2(F) for each edge, such that the product of central characters around each
vertex is trivial; that is precisely the situation in which the classical 6j symbol for SU2 is

meaningful.

It seems likely that most of the results of this paper would carry over to this situation,

i.e., attach a tetrahedral symbol {Π} to a datum as in (9.5.2). The embedding H → G

that played a crucial role earlier is to be replaced by H → G∗ × G∗/Z∗
where Z∗

is the

antidagonal copy of the center. We have not verified the details but expect that multiplicity

one holds in this context, permitting us to carry over our definitions verbatim; and it is

likely that the same theorems also hold with cosmetic modifications.

9.5.4. Completing Regge’s original symmetry to aW(D6)-symmetry. The prior discussion has

an interesting manifestation related to the Regge symmetries as originally envisioned by

Regge. Restrict now to the case when F = ℝ, and let us consider the classical 6j symbol

attached to the matrix J of non-negative integers given by

J =

[
j1 j2 j3
j4 j5 j6

]
7−→

{
j1 j2 j3
j4 j5 j6

}
∈ ℂ,

i.e., in our language, the tetrahedral symbol attached to the 2j+1-dimensional representa-

tions of SO3. The condition for this to be defined is, with our convention, that the triangle

inequalities associated to all four vertices are satisfied, e.g. j1, j2, j3 are the lengths of a

Euclidean triangle, and so forth.

The Weil group of the real numbers is an extension of ℂ∗
by an element c (for “conjuga-

tion”) satisfying c2 = −1, whose action on ℂ∗
is given by conjugation, i.e. czc−1 = z̄. The

representation ρj, as in (9.5.1), associated to V2j+1, is given by

ρj : z = re
iθ 7→

[
ei(2j+1)θ 0

0 e−i(2j+1)θ

]
, c 7→ c0,j :=

[
0 1

−1 0

]
. (9.5.3)

Note that ρj ≃ ρ−j−1.
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Let us consider J as defining a class in
˜D6, by sending each edge with positive orientation

to the corresponding value of 2j + 1 (and the opposite orientation to −2j − 1); using the

isogeny
˜D6 → D6 we shall think of this as a cocharacter J for Spin12. The representation

ρ
Spin

is then given by

reiθ 7→ J(eiθ), c 7→ ẇ0, (9.5.4)

where ẇ0 is a representative (induced by (9.5.3)) for the longest element ofW(D6), which

negates all variables. Let us observe that any two such representatives are in fact conjugate

under the maximal torus, and so the conjugacy class of (9.5.4) is independent of this choice.

Although we are no longer in the principal series case, it remains of interest to examine

what symmetries of the tetrahedral symbol might be induced byW(D6). If we replace J in

(9.5.4) by w(J) for w ∈W(D6), the resulting homomorphism remains conjugate to (9.5.4).

The various w(J) correspond to various collections

J ′ :=

[
j ′1 j ′2 j ′3
j ′4 j ′5 j ′6

]
.

In general, the J ′ are only half-integral. However, they satisfy a parity constraint: the sums

of J ′s along triples of edges emanating from a single vertex are integers. In fact, this parity

condition is closed underW(D6)-symmetry; in other words, we may relax the assumption

on J to that J has half-integral entries satisfying the same parity conditions.

One checks by direct computation that, for generic J, there are 15 possibilities for J ′

modulo I⋊T; here 15 arises from the index of I⋊T insideW(D6) (cf. Lemma 4.3.1). The

various J ′ do not correspond to homomorphisms WF → SL
E
2, but the parity properties

noted above imply that they do correspond to homomorphisms WF → G̃∗
, with notation

as in § 9.5.3, and thus define L-packets of discrete series representations of G∗(ℝ). The

tetrahedral symbol can then be defined according to the discussion of § 9.5.3.

In order to define it in all cases, however, one needs to switch between G∗(ℝ) and

its compact form to cover all cases. Indeed, the reasoning of Lemma 9.5.2 implies the

following all-or-none property for J ′ as above: either the triangle inequalities are satisfied

for all the vertices, or for none of them. In the six cases (represented by the subgroup

S3 in Lemma 4.3.2) where all triangle inequalities are satisfied, we interpret entries of

J ′ as indexing representations of SU2, and use the classical 6j symbol; in the remaining

nine where no triangle inequality is satisfied, we interpret them as indexing holomorphic-

antiholomorphic pairs of discrete series for SL2(ℝ). With this setup it becomes natural to

ask:

Question 9.5.5. Are all of these extended classical 6j symbols for the 15 J ′s — six attached

to SU2 and nine attached to SL2(ℝ) — actually equal, up to sign and a normalizing

γ-factor?

If true, this means in effect that the original Regge symmetries can indeed be “com-

pleted” to aW(D6) symmetry, even though the Regge group is very much smaller. Quite

possibly this question is accessible through some of our hypergeometric formulae, or

through the prior work of Groenevelt [Gro03,Gro06], but we have not examined it.
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9.5.6. Formulas outside the principal series case. Proposition 7.3.1 can be generalized beyond

the principal series case using the Langlands formalism. Let us suppose that π14 and π23

are principal series, but make no supposition about the remaining πs. In the statement of

Proposition 7.3.1 we can then simply replace the roles of ρij by the Langlands parameter

of the representation πij. Then we anticipate that formula (7.3.1) remains valid; we have

an argument for this, but have not verified the details, constants and so forth, and will

return to it elsewhere.

9.6. Functoriality and Spin12. Langlands duality provides a “lifting”

irreducible representations of R6 −→ L-packets of representation of PSO12(F) (9.6.1)

associated with the morphism SL
6
2 → Spin12 of dual groups. Our discussion of duality

suggests that the tetrahedral symbol factors through the lifting (9.6.1).

There is a natural for the function on the right which pulls back to the tetrahedral

symbol, as we now sketch. Namely, we can use the same general setup as § 8: we consider

two PSO12-spaces X, Y and an averaging intertwiner from X to Y, and compute the scalar

by which (9.6.2) below fails to commute:

C∞(X)

Π

C∞(Y)

Av

ΛX

ΛY

(9.6.2)

where ΛX, ΛY are “normalized” embeddings of the PSO12-representation Π into X and

Y. Our proposal is, for well-chosen X and Y, the resulting function on (certain) PSO12-

representations agrees with the tetrahedral symbol after pullback via (9.6.1).

Relative Langlands duality suggests natural choices for X and Y: For X we take the

Langlands dual to the 32-dimensional (hyperspherical!) half-spin representation S of

Spin12; it is a generalized Bessel model for PSO12. For Y we take the Whittaker model for

PSO12, so its Langlands dual is a single point. Finally, to define the intertwiner Av, we

average over over the smallest G-orbit Z in X× Y that supports an invariant distribution.

In the language of § 8.2, Z defines a Lagrangian

L := conormal of Z ⊂M×N := T
∗X× T

∗Y,

whose dual Ľ ⊂ M̌ × Ň = S we expect to be precisely the cone of pure spinors. There

is no other reasonable candidate for Ľ: the preimage of 0 under the moment map for the

half-spin representation is already an irreducible Lagrangian.

9.7. Geometric representation theory. We will now indicate a geometrization of Theo-

rem 5.2.1. We work now over the field F = 𝔽p((t)), and write O = 𝔽p[[t]]. We use the same

notations G,D,H,X, Y, Z,M = T
∗X,N = T

∗Y, M̌, Ň as from § 8; we have aLagrangian

Ľ ⊂ M̌× Ň “induced from” the cone of pure spinors P ⊂ Ň.
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Now, the geometric conjecture of relative Langlands duality asserts that there are equiv-

alences of categories:

constructible sheaves on XF/GO ∼ (coherent sheaves on M̌/Ǧ)shear,

constructible sheaves on YF/GO ∼ (coherent sheaves on Ň/Ǧ)shear.

(We omit technical details about the exact categories, which can be found in [BZSV24];

also, the superscript “shear” means that the category is to be regraded as in loc. cit.; the

details are not presently important.) Moreover, the equivalence above carries the “basic

sheaf”, the constant sheaf on XO or YO, to the structure sheaf on the coherent side, and is

compatible, in a natural way, with the Satake equivalence.

The diagram X ← Z → Y gives rise, by pullback followed by pushforward, to a func-

tor I
aut

(for “automorphic intertwiner”) from constructible sheaves on YF/GO to ind-

constructible sheaves on XF/GO. (Note that to actually define this requires examination

of technical details that we have not carried out; the spaces XF, YF, ZF are not pleasant.) A

natural conjecture is that this functor is equivalent, with respect to the equivalences above, to the
push-pull I

spec
along the diagram

M̌/Ǧ←− Ľ/Ǧ −→ Ň/Ǧ. (9.7.1)

As we sketch in § 15.2, our Theorem 5.2.1, in the case of nonarchimedean F of finite

residue characteristic, would result from the statement by taking Frobenius trace.

Part 2. Proofs

10. Convergence and the analytic continuation

We prove all results related to convergence and analytic continuation in this section.

10.1. Proof of Proposition 3.5.3. Let X be a smooth algebraic variety over the local field

F and fs a family of smooth ℂ-valued functions on X(F) depending analytically on the

complex parameter s ∈ ℂn, or, more generally, a parameter s belonging to a complex

analytic manifold.

Definition 10.1.1. We say fs is “a controlled family of functions on X(F) depending ana-

lytically on s, ” or for short controlled, if there is a smooth compactification X → X̄, with

normal crossing boundary, with the following property: for each point x ∈ X̄(F) and

N ⩾ 0, there exists an analytic neighbourhood Ux ⊂ X̄(F), local equations z1, . . . , zr for

the various divisorial components of the boundary passing through x, and an asymptotic

expansion of the following form:

fs =
∑
i

gi,s +O(|z1z2 · · · zr|N). (10.1.1)

where each gi,s has the form

hi × |z1|
a1(s) · · · |zn|an(s)
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with hi,s a smooth function on Ux varying meromorphically
15

in s, and the ai(s) analytic

in s.

Lemma 10.1.2. If Y is a closed subvariety of X and fs is controlled on X then the restriction of fs
to Y is also controlled.

Proof. Let Y∗
be the closure of Ywithin X̄. The boundaryZ = Y∗−Y is a closed set, but need

not be a normal crossing divisor. Then we find an embedded resolution of singularities,

i.e., a map π : Ȳ → Y∗
with the property that π−1(Z) is a union of normal crossing divisors.

In that case, the pullback of any local equation zi as above must have the form

∏
iw

bi
i

where the wi are local equations for boundary divisors on Ȳ. From this we see that fs on

Y satisfies the same condition. ∎

Lemma 10.1.3. Suppose fs is a controlled family of functions on X, and let ω be a volume form
on X. Suppose the integral

I(fs) :=

∫
X(F)

fs|ω|

converges absolutely for some s. Then I(fs) can be meromorphically continued to all s.

Proof. We analyze this by local computation, following Igusa, using the asymptotic ex-

pansion (10.1.1). Using a partition of unity reduces our statement to the meromorphicity

of ∫
Fn
Φs(z)× |z1|

a1(s) · · · |zn|an(s)

where Φs(z) is a smooth compactly supported function of z1, . . . , zn ∈ Fn that varies

holomorphically in s, and, by the assumed absolute convergence, there exists some value

s0 of s for which the real part of ai(s0) is larger than −1.

If F is nonarchimedean, we reduce to the case when Φs is the characteristic function of

a product of intervals |zi− zi0 | ⩽ C, and we leave the verification in that case to the reader.

In the archimedean case, we repeatedly integrate by parts to replace an integral by one

in which all the ai(s) have real part larger than zero, and the integral becomes absolutely

convergent. For example, in the case F = ℝ and n = 1 the relevant identity is∫
ℝ

d2Nϕ

dx2N
|x|s+2N = (s+ 1) . . . (s+ 2N)

∫
ϕ(x)|x|s

This shows that the integral becomes holomorphic upon multiplication by a polynomial

of the form

∏n
i=1(ai(s) + 1)(ai(s) + 2) . . . (ai(s) + 2N). Our assumption on the s0 shows

that this polynomial does not vanish identically. ∎

15
Note that by a “smooth function varying holomorphically,” what we mean is that it is a holomorphic

function of s with values in the space of smooth functions with its natural topology; in the real or complex

case, this is the topology induced by requiring uniform convergence of all derivatives on compact sets; h is

a smooth function varying meromorphically if h(s)P(s) is holomorphic for some choice of polynomial P.
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For us, an important example arises as follows. Suppose, to simplify the dicussion, that

F is nonarchimedean, and fix an open compact subgroup of R. We need some language to

be able to speak of “holomorphically varying families of vectors in holomorphic families

of representations.” Let P be the complex analytic space described in (3.5.1). By an abuse

of notation, we will understand a point π ∈ P to index the corresponding representation if

π is discrete series, and the associated principal series representation if π corresponds to a

quasi-character of F×. With this understanding, for each π ∈ P, the space of fixed vectors

πK is finite-dimensional, and the various πK fit together to give a finite-dimensional holo-

morphic vector bundle over P, the “bundle of K-invariants.” The holomorphic structure

is described as follows: positive dimensional components of P correspond to families of

principal series representations, and the condition for a section of the vector bundle to be

holomorphic is that all its point evaluations at points of F2− {0} be holomorphic. Similarly,

the family of Jacquet modules π̄, i.e., the largestU-invariant quotient of the various πs, again

fit together to a holomorphic vector bundle over P, where the holomorphic structure is

determined by requiring that the map πK 7→ π̄ induces a holomorphic map of bundles for

every K.

Having fixed this, we fix a self-pairing (−,−)π for each π ∈ P that varies meromor-

phically (i.e., it induces a meromorphic self-pairing on the vector bundle πK for each K);

for example, such a pairing will be fixed in § 11. It induces, by work of Casselman, a

self-pairing (−,−)π̄ on the Jacquet-modules π̄. This “Casselman” pairing is characterized

by the following property: for any v1, v2 ∈ πwe have

(axv1, v2)π = (axv̄1, v̄2)π̄ (10.1.2)

for ax = diag(x, 1) whenever |x| is sufficiently small. In fact, for each open compact

subgroup U there exists ε(U) so that (10.1.2) holds whenever v1, v2 ∈ πU and |x| < ε(U).

In particular, (−,−)π̄ also varies meromorphically. With this setup we can assert:

Lemma 10.1.4. Suppose that π 7→ vπ and π 7→ wπ are holomorphic sections of the bundles
of K-invariant vectors over P. Then the function P × PGL2(F) → ℂ, associating to π ∈ P and
g ∈ PGL2(F) the number (gvπ, wπ), is a controlled family of functions on PGL2(F) parameterized
by the complex manifold P.

Proof. We use the embedding PGL2 → ℙ(Mat2). A local analytic coordinate system for a

point on the boundary has the form k1axk2 where k1, k2 range through open neighbour-

hoods in K, ax = diag(x, 1) as above, and |x| ⩽ c. The desired properties follow from

(10.1.2) and the following fact: for the principal series induced from χ, the Jacquet module

π̄ is two-dimensional and the eigenvalues of ax upon it are given by χ+ and (χ−1)+. ∎

Proof of Proposition 3.5.3. For each e ∈ E choose a holomorphic family of vectors v
(e)
π pa-

rameterized by π ∈ P. Tensoring together, this induces a holomorphic family of vectors

in the family of representations of RE
parameterized by PE

.

It is enough to show that both the integrals

∫
H
(hv1, v2)dh (3.4.3) and the integral∫

H∩D\H
ΛD(hv)dh of (3.4.4), where v1, v2, v are chosen to be holomorphic families of the

type just described, vary meromorphically over PE
.
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The first integral amounts to taking a family of matrix coefficients on PGL2(F)
O

param-

eterized by PE
, pulling it back to H, and integrating. The second amounts to taking a

family of matrix coefficients on PGL2(F)
O

, again parameterized by PE
, pulling it back to

(D ∩ H)\H ≃ (PGL2(F))
3
, and integrating. In both cases, family of matrix coefficients

is controlled after pull-back by applying Lemma 10.1.4 and the desired result thereby

follows from Lemma 10.1.3. ∎

10.2. Proof of the absolute convergence in Proposition 6.3.1. We start from the right-

hand side of (6.3.6). For absolute convergence, since all χij are unitary, it suffices to assume

that they are trivial. Thus it reduces to show that M has finite volume with respect to the

volume form

|Ω|
1
2 =

∣∣∣∣∣∣
∧
e dxe√∏

e̸=e ′ xe ∧ xe ′

∣∣∣∣∣∣,
in which e, e ′ are unoriented edges that share exactly one vertex. Let us recall from (6.3.4)

that the statement to be proven can be put in a concrete form, namely,∫
F3

1

|xyz(x− y)(y− z)(1− z)(1− x)|
1
2

<∞.
First argument via high school calculus. We only sketch this. Suppose that F = ℝ for

ease of visualization. We need to choose coordinates around each potential singularity of

the integral and check local convergence. As an illustration, let us check conergence in

x2+y2+z2 ⩽ 1. We work in spherical coordinates. We can neglect the terms (1−x)(1−z).

Discarding these, the function is homogeneous of homogeneity degree −5/2; and since∫1
0
r−5/2r2dr < ∞ it suffices then to verify that |xyz(x − y)(y − z)|−

1
2 is integrable on the

unit sphere. The singularities of this function lie along five great circles, and again it is

enough to check local convergence. The most problematic singularity is x = y = 0 where

three great circles meet; but in local coordinates (u, v) near that point, the function looks

like |uv(u+ v)|
1
2 , which is verified to be integrable by passing to polar coordinates.

Second argument via algebraic geometry. Algebraic geometry offers a more systematic way

to write the prior type of reasoning, at the cost of requiring rather more background. Using

the classical theory of moduli stack of marked curves (see [Knu83]), we can compactify

M◦
to a projective variety M (because we are considering genus 0 curves) whose boundary

M−M◦
is a union of smooth divisors with normal crossings. When this is done, we have

Claim. Ω has at most simple poles along each boundary divisor.

The absolute convergence then follows from the simple fact that the function |ϵ|−
1
2 is

locally integrable near ϵ = 0.

The irreducible components of the divisor M−M◦
can be put in three types:

(1) 2 points (i.e., xes) collide;

(2) 3 points collide in a generic fashion;

(3) 4 points collide in a generic fashion.



50 AKSHAY VENKATESH AND X. GRIFFIN WANG

We leave the (easy) first case to the reader, and explain whyΩ has at most a simple pole

along all divisors of the other two types. It suffices in both cases to choose a coordinate

chart (a, b, ϵ) near any generic point of the divisor, where ϵ = 0 defines the divisor, and

computeΩ in local coordinates.

In the three-point case, we take our coordinate chart to be given by

xe = b+ ϵ, xe ′ = b+ aϵ, xe ′′ = b, remaining xs = 0, 1,∞,
where a ̸= 1 and b /∈ {0, 1}. In the four point-case we take our coordinate chart to be

xe = 0, xe ′ = ϵ, xe ′′ = aϵ, xe ′′′ = bϵ, remaining xs = 1,∞,
where a, b must avoid the loci a = 0, a = 1, b = 0, b = 1 and a = b. In the three-point

(resp. four-point) cases, the expression forΩ is then

(ϵdϵ∧ da∧ db)2

ϵk
, resp.

(ϵ2dϵ∧ da∧ db)2

ϵk
,

where k is the number of adjacencies amongst the edges e, e ′, e ′′. Evidently k ⩽ 3 in the

three-point case. In the four point case we note that not all four of e, e ′, e ′′, e ′′′ can be

simultaneously adjacent, and so k ⩽ 5. In both cases the order of pole ofΩ is then at most

1 as desired.

10.3. Proof of the absolute convergence of (3.4.4). We must verify that the integral of

ΛD(hv) overH∩D\H is absolutely convergent. NowΛD(hv) is a certain product of matrix

coefficients of tempered representation; by the results of Cowling, Haagerup and Howe

[HCH88, Theorem 2], these are all majorized by a matrix coefficient of a suitable tempered

principal series representation. Therefore it suffices to check the absolute convergence

when all πij are tempered principal series, i.e. principal series associated to unitary

characters χij; but in that case the integral has been computed explicitly and proved to

be absolutely convergent in Proposition 6.3.1 (actually, the proof of absolute convergence

was was just given now, in § 10.2).

11. Computations with principal series

Our goal here is to prove the edge formula for principal series, stated in § 6.3. We

already outlined the general plan of the computation at that point; the main issue is to

be very careful about the normalizations of various functionals, because it is otherwise

rather easy to compute the answer only up to an unspecified constant.

We follow the notation set up in § 6.3, so that we assign characters χij of F× to oriented

edges such that χijχji = 1, and let πij be the corresponding unitarily induced principal

series representations. Let BR ⊂ R = PGL2 be the standard upper-triangular Borel in R

and B = BO
R the Borel in G.

11.1. The plan of the computation. Recall that {Π} is defined using a D-functional on

Π, denoted by ΛD and an H-invariant functional denoted by ΛH. What we will do, here,

is to compute with a different normalizations of such invariant functionals, which we
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call ϕD, ϕH, and then deduce what we want about ΛD, ΛH. Then we compare ΛH with

another H-invariant functional obtained by averaging ΛD:

(ΛH) ′ : v 7−→
∫
H∩D\H

ΛD(hv)dh.

Due to the technicality of this section, we give an outline of the argument for the reader’s

convenience:

• In § 11.2 we set up notations related to principal series.

• In §§ 11.3 and 11.4 we carry out computations related to normalizing bilinear and

trilinear pairings on principal series.

• In § 11.5 we define ϕD (resp. ϕH) and write ΛD (resp. ΛH) in terms of it.

• in § 11.6 we compare the H-average of ϕD with ϕH.

• In § 11.7 we conclude the proof, conditional on a computational lemma, which is

proved in § 11.8.

11.2. Setup on principal series. We will summarize some essential properties and nota-

tion related to principal series for R. In what follows, we abridge χ(detg) to χ(g). We

have fixed a local field F, and characters and measures are fixed as in § 2.1.

There is a very useful way to parameterize vectors by Schwartz functions, namely there

is a natural projection C∞
c
(F2)→ πχ where we force a function f on F2 to have the desired

degree of homogeneity along central directions, namely, we send

f(z) 7−→ fχ(z) :=

∫
λ∈F×

χ−2(λ)|λ|f(λz)d×λ =

∫
λ∈F

f(λz)χ−2(λ)dλ. (11.2.1)

The normalized principal series πχ is realized in the space of functions Φ : R → ℂ that

transform on the left by means of the character[
a b

0 c

]
7−→ (χ−1)+(a/c) = χ

( c
a

) ∣∣∣a
c

∣∣∣ 12 .
This coincides with the definition given in § 3.5.1 in terms of functions on the punctured

plane. Indeed, given Φ as above, pull it back to F2 − {0} by means of (x, y) 7→ gxy, where

gxy is any matrix with bottom row (x, y) and determinant equal to 1, and then extend it to

F2 by 0. The result f is independent of choice of gxy and satisfies f(λ · z) = χ2(λ)|λ|−1f(z).
Now let us discuss how to rigidify this πχ, that is, how to endow it with a self-duality

pairing. First, let us observe that on the space of (−2)-homogeneous functions on F2

there is an action of R whose pullback to GL2 is g : f(z) 7→ f(zg)|detg|, and an invariant

functional given by integrating f on ℙ1F (see § 2.4). Composing this with the product

of two functions gives an invariant pairing πχ ⊗ πχ−1 → ℂ, which we denote simply by

(f, g) 7→
∫
ℙ1 fg.

For z1, z2 ∈ F2, we denote by z1∧ z2 ∈ F the determinant of the 2×2matrix whose rows

are respectively z1 and z2. Now put

K(z1, z2) =
χ−2(z1 ∧ z2)

|z1 ∧ z2|
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and note that K(z1, z2) = K(z2, z1). Then for f ∈ πχ the function

I(f)(z) :=

∫
ℙ1
K(z, z ′)f(z ′)

defines an element of πχ−1 and the rule f 7→ I(f) intertwines πχ with πχ−1 . We also denote

I by Iχ when we need to be explicit (note that Iχ and Iχ−1 are not inverse to each other).

The rule

⟨f1, f2⟩ :=
∫
ℙ1
f1 · I(f2) =

∫
ℙ1×ℙ1

K(z1, z2)f1(z1)f2(z2)

defines (at least for generic χ) a rigidification of πχ.

11.3. The bilinear pairing on principal series. Continue with notation as above. We

have defined a rigidification of πχ and πχ−1 . There is, up to sign, a unique isomorphism

between these that preserves rigification, that we shall call the rigidified isomorphism;

it is the essential uniqueness of the rigidified isomorphisms that make rigidifications so

useful!

We can then transport the rigidification, either on πχ or on πχ−1 , by means of a rigidified

isomorphism in one factor, and get (up to sign) the same pairing

πχ × πχ−1 −→ ℂ, (11.3.1)

which we will call the “normalized” pairing, and which we shall compute to be

(f, g) 7−→
√
γ(1, χ2)γ(1, χ−2)

∫
ℙ1
fg.

Denote by S(F2) the Schwartz space on F2, namely the space of smooth rapidly decreas-

ing functions if F is archimedean, or locally constant functions with compact support if F

is nonarchimedean. We normalize the Fourier transform F2 on F2 by means of

F2Φ(z1) =

∫
z2∈F2

Ψ(z1 ∧ z2)Φ(z2). (11.3.2)

Note that since we use a skew-symmetric pairing inside Ψ instead of a symmetric one, one

has F22 = id without also negating z (cf. § 2.3).

Lemma 11.3.1 (Intertwiner versus Fourier transform). The following diagram commutes:

S(F2) S(F2)

πχ πχ−1

f7→fχ

F2

f7→f
χ−1

γ(1,χ2)−1Iχ

Moreover, Iχ−1Iχ is the same as multiplication by γ(1, χ2)γ(1, χ−2).

Proof. We compute

Iχ(fχ)(z) =

∫
λ∈F,z ′∈ℙ1

χ−2(λ)f(λz ′)χ−2+ (z∧ z ′)dz ′dλ

=

∫
(x,y)∈F2

f(x, y)χ−2+

(
z∧ (x, y)

)
dxdy.
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On the other hand, we also have

F2(f)χ−1(z) =

∫
λ∈F,z ′∈F2

χ2(λ)Ψ(λz∧ z ′)f(z ′)dz ′dλ = γ(1, χ2)−1Iχ(fχ)(z),

where we first carried outλ-integral to giveγ(1, χ2)−1χ−2+ (z∧z ′). Here we used from (2.2.5)

the fact that the Fourier transform of a character χ, considered as a function on the additive

group, is (χ(−1)γ(1, χ)χ1)
−1

(and that χ2(−1) = 1). This proves the commutativity of the

diagram.

Moreover, applying the above equation with χ replaced by χ−1 and f by F2(f) we get

F22(f)χ = γ(1, χ−2)−1Iχ−1

(
F2(f)χ−1

)
= γ(1, χ−2)−1γ(1, χ2)−1Iχ−1Iχ(fχ), (11.3.3)

from which we obtain the second claim. ∎

Lemma 11.3.2. A rigidified isomorphism

πχ ⊠ πχ−1 −→ πχ ⊠ πχ

is given byγ(1, χ2)− 1
2γ(1, χ−2)−

1
2 (id⊗Iχ−1). Correspondingly, a normalized pairing onπχ⊠πχ−1

(as in (11.3.1)) is given by

(f, g) 7−→
√
γ(1, χ2)γ(1, χ−2)

∫
ℙ1
fg.

Proof. Use v, v ′ to denote for vectors in πχ and w,w ′
for vectors in πχ−1 . Now, integration

against the kernel K(x, y) above, or its analogue for χ−1, give respectively

Iχ : πχ −→ πχ−1 ,

Iχ−1 : πχ−1 −→ πχ.

The self-duality structures are given by

∫
ℙ1 v · Iχ(v

′) on πχ and similarly

∫
ℙ1 w · Iχ−1(w ′)

on πχ−1 . Consider now

id⊗ Iχ−1 : πχ ⊠ πχ−1 −→ πχ ⊠ πχ

v⊗w 7−→ v⊗ Iχ−1(w).

Transporting back the self-duality form

∫
ℙ1 v1 · Iχ(v

′
1) ×

∫
ℙ1 v2 · Iχ(v

′
2) on the right hand

side, we get on the left the self-duality form∫
ℙ1
v · Iχ(v ′)×

∫
ℙ1
Iχ−1(w) · IχIχ−1(w ′)

(11.3.3)

=

∫
ℙ1
v · Iχ(v ′)×

∫
ℙ1
Iχ−1(w) ·w ′ · γ(1, χ2)γ(1, χ−2).

Since K is symmetric in its two arguments, Iχ−1 is adjoint to Iχ with respect to the pairing∫
ℙ1 , and so we can rewrite the above as γ(1, χ2)γ(1, χ−2) multiplied by the standard self-

duaity pairing on πχ⊠πχ−1 . The first claim follows, and the second claim is a consequence

of the first. ∎
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11.4. Normalizing the trilinear functional. Now fix three characters χ1, χ2, χ3 with cor-

responding principal series representations πχi , and write H ′
for the diagonal copy of R

inside G ′ = R3. Put

Π ′ = πχ1 ⊠ πχ2 ⊠ πχ3 .

We also let χ123 = χ1χ2χ3.

We rigidify each πχi and so also Π ′
according to the discussion above. Our interest

here will be to compute the normalized (in the sense of (3.4.3)) H ′
-invariant functional on

the space of Π ′
. The open orbit of H ′

on (ℙ1)3 is the locus O where the three points are

distinct, which we denote by [xj, yj] for j = 1, 2, 3. We fix a basepoint p0 ∈ O and a lift

p̃0 ∈ (F2)3; for concreteness we take p0 = (0, 1,∞) and

p̃0 =
(
(0, 1), (1, 1), (1, 0)

)
∈ (F2)3.

TheH ′
-invariant measure is induced by the 3-form on (ℙ1)3whose pullback to (F2−{0})3

is

dp =

∏3
j=1(xjdyj − yjdxj)

(x1y2 − x2y1)(x2y3 − x3y2)(x3y1 − x1y3)
. (11.4.1)

The choice of order in the product does not matter, because the measure induced by a

differential form does not depend on sign. It is easily seen that this formula is independent

of the choices of xj and yj, and is invariant under H ′
. We transport this measure to H ′

by

means of h ∈ H ′ 7→ p0h. The resulting measure d
ℙh is independent of the choice of p0.

We remind the reader that if F is nonarchimedean, this measure assigns H ′(O) = R(O)

volume 1 − q−2
, hence differs from the normalized Haar measure (cf. § 3.2). Evidently,

the following form on Π ′
is H ′

-invariant:

τ(f1 ⊠ f2 ⊠ f3) =
∫
H ′
(hf1 ⊠ hf2 ⊠ hf3)(p̃0)d

ℙh =

∫
H ′
ψ(h̃)f(p̃0h̃)d

ℙh, (11.4.2)

where we choose some h̃ ∈ GL2 lifting h, and ψ = (χ−1123| · |3/2) ◦ det.

Lemma 11.4.1. With the choice of p̃0 above, we have

τnorm = α
1
2τ,

where τnorm is the “normalized” trilinear functional on Π ′ defined via τnorm(v1)τ
norm(v2) =∫

h∈H ′(hv1, v2)dh, and

α = ν−1ℙ

3∏
i=1

γ(1, χ2i ) · γ
(1
2
, χ1̄2̄3̄

)
γ
(1
2
, χ12̄3̄

)
γ
(1
2
, χ1̄23̄

)
γ
(1
2
, χ1̄2̄3

)
.

where we use the shorthand χ12̄3̄ for χ1χ−12 χ−13 , and so on, and νℙ is defined by (3.2.3).

Proof. First, note that

τ(f) =

∫
F3
f1(x1, 1)f2(x2, 1)f3(x3, 1)

χ12̄3̄(x2 − x3)χ1̄23̄(x3 − x1)χ1̄2̄3(x1 − x2)

|(x2 − x3)(x3 − x1)(x1 − x2)|
1
2

dx1dx2dx3.

(11.4.3)



THE TETRAHEDRAL (OR 6j) SYMBOL 55

To see this we set

h̃ =

[
x3b b

x1d d

]
(11.4.4)

with b = (x1 − x2) and d = (x2 − x3). Note that hmaps p0 to (x1, x2, x3); in fact,

p̃0h̃ = ((x2 − x3)[x1, 1],−(x3 − x1)[x2, 1], (x1 − x2)[x3, 1]) ∈ (ℙ1)3.

Note also that det h̃ = (x2−x3)(x3−x1)(x1−x2). Using these coordinates for h in (11.4.2),

the claim follows.

Now, take f ∈ Π ′
and g ∈ Π̃ ′ := πχ−1

1
⊠ πχ−1

2
⊠ πχ−1

3
. Then we have

τ(f)τ(g) =

∫
h1,h2∈H ′

ψ(h̃1)ψ
′(h̃2)f(p̃0h̃1)g(p̃0h̃2)d

ℙh1d
ℙh2 (11.4.5)

=

∫
x,h2∈H ′

(xf)(p̃0h̃2)g(p̃0h̃2)|det(h̃2)|
3
d
ℙxdℙh2,

where we substituted x = h̃−1
2 h̃1, ψ = (χ−1123| · |3/2) ◦ det and ψ ′ = (χ123| · |3/2) ◦ det. The

product ϕ := (xf) · g is a function of homogeneous degree −2 and for such a function we

have ∫
H ′
ϕ(p̃0h̃)|det(h̃)|3dℙh =

∫
(ℙ1)3

ϕ. (11.4.6)

To check (11.4.6) we express both as integrals over F3. The right hand side equals∫
F3
ϕ(x1, x2, x3)dx1dx2dx3 by (2.4.1). On the left hand side, we parametrize elements

h̃ by means of (x1, x2, x3) as in (11.4.4). The function p0h 7→ ϕ(p̃0h̃)|det(h̃)|3, considered

as a function on the orbit O, therefore assigns to (x1, x2, x3) ∈ F3 ⊂ ℙ1(F)3 the value

∆ϕ(x1, x2, x3), where ∆ = |(x2 − x3)(x3 − x1)(x1 − x2)|, and therefore its integral against

the measure ∆−1
dx1dx2dx3 (cf. (11.4.1)) coincides with the right hand side of (11.4.6).

That concludes the proof of (11.4.6).

Combining (11.4.5) with (11.4.6) we find that τ(f)τ(g) coincides with the integral of the

pairing ∫
x∈H ′

d
ℙx

∫
(ℙ1)3

(xf) · g = νℙ

∫
x∈H ′

dx

∫
(ℙ1)3

(xf) · g.

Now, recall that the normalized pairing onπχ is defined by ⟨f, g⟩ =
∫
ℙ1 f·I(g); we therefore

obtain for f, g ∈ Π ′
the equality

τnorm(f)τnorm(g) =

∫
H ′

dx

∫
(ℙ1)3

xf · I(g) = τ(f)τ(I(g)),

where I now connotes the product of intertwining operators in each of the three tensor

variables. It remains now to verify that

τ(I(g)) = ατ(g).
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To prove this, we may suppose that g = ⊠iΦi,χi for some Φi ∈ C∞
c
(F2) (cf. (11.2.1)), and

then from (11.4.3)

τ(g) =

∫
(z1,z2,z3)∈(F2)3

Φ1(z1)Φ2(z2)Φ3(z3)
χ12̄3̄(z2 ∧ z3)χ1̄23̄(z3 ∧ z1)χ1̄2̄3(z1 ∧ z2)

|(z2 ∧ z3)(z3 ∧ z1)(z1 ∧ z2)|
1
2

.

Using Lemma 11.3.1, we have

τ(I(g)) =
∏
i

γ(1, χ2i )

×
∫
(z1,z2,z3)

F2(Φ1 ⊠Φ2 ⊠Φ3)
χ1̄23(z2 ∧ z3)χ12̄3(z3 ∧ z1)χ123̄(z1 ∧ z2)

|(z2 ∧ z3)(z3 ∧ z1)(z1 ∧ z2)|
1
2

,

(11.4.7)

where we still use F2 to denote the Fourier transform on (F2)3 induced by F2 in (11.3.2).

For Φ ∈ C∞
c
((F2)3) and a tempered distribution χ on (F2)3, adjointness of the Fourier

transform gives ∫
(F2)3

Φ · χ̄ =

∫
(F2)3

F2(Φ) · F2(χ),

where χ̄means the complex conjugation.

For additive character Ψ, Ψ(x) = Ψ(x)−1 = Ψ(−x), we have then F2(χ̄)(y) = F2(χ)(−y).

As a result, (11.4.7) is equal to∏
i

γ(1, χ2i )

∫
(z1,z2,z3)∈(F2)3

Φ1(z1)Φ2(z2)Φ3(z3) · F2(χ)(−z1,−z2,−z3),

where χ is the distribution given by

(z1, z2, z3) 7−→
χ1̄23(z2 ∧ z3)χ12̄3(z3 ∧ z1)χ123̄(z1 ∧ z2)

|(z2 ∧ z3)(z3 ∧ z1)(z1 ∧ z2)|
1
2

.

The result then follows from Lemma 11.4.2 below. ∎

Lemma 11.4.2. Let α1, α2, α3 be characters of F× and α123 = α1α2α3. Then the distribution on
(F2)3 given by α1(z2 ∧ z3)α2(z3 ∧ z1)α3(z1 ∧ z2) has Fourier transform(

γ(1, α123| · |)
∏
i

γ(1, αi)
)−1 × α−1

1 (z2 ∧ z3)α
−1
2 (z3 ∧ z1)α

−1
3 (z1 ∧ z2)

|(z2 ∧ z3)(z3 ∧ z1)(z1 ∧ z2)|
.

Proof. We will proceed formally, leaving the routine analysis details of dealing with dis-

tributions (in contrast to functions) to the reader. The basic strategy is simply to carry

out the Fourier transform first in the z1 variable, then z2, then z3; each of these will be

straightforward after a change of coordinates.

Write zi = (xi, yi) and dzi = dxi ∧ dyi. Using the equalities(
(z2 ∧ z3)dz1

)
∧ dz2 ∧ dz3 =

(
d(z2 ∧ z1)∧ d(z3 ∧ z1)

)
∧ dz2 ∧ dz3,

z1 =
(z1 ∧ z3)z2 − (z1 ∧ z2)z3

z2 ∧ z3
,
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we carry out the first change of coordinates, fixing z2 and z3 but replacing z1 by

z ′1 = (x ′1, y
′
1), x

′
1 = z2 ∧ z1, y

′
1 = z3 ∧ z1.

Perform Fourier transformation with respect to z1 with k1 being the dual coordinate of

z1, in other words, we compute the integral∫
F2
Ψ(k1 ∧ z1)α1(z2 ∧ z3)α2(z3 ∧ z1)α3(z1 ∧ z2)dz1

=

∫
F2
Ψ
(k1 ∧ z2
z2 ∧ z3

(−y ′
1) +

k1 ∧ z3

z2 ∧ z3
x ′1

)
α1(z2 ∧ z3)α2(y

′
1)α3(−x

′
1)

dz ′1
|z2 ∧ z3|

=
α1(z2 ∧ z3)

|z2 ∧ z3|

∫
F

Ψ
(k1 ∧ z2
z2 ∧ z3

(−y ′
1)
)
α2(y

′
1)dy

′
1

∫
F

Ψ
(k1 ∧ z3
z2 ∧ z3

x ′1

)
α3(−x

′
1)dx

′
1

= α23(−1)
α1(z2 ∧ z3)

|z2 ∧ z3|
F(α3)

(k1 ∧ z3
z2 ∧ z3

)
F(α2)

(k1 ∧ z2
z2 ∧ z3

)
(2.2.5)

=
(
γ(1, α2)γ(1, α3)

)−1
α3̄;−1(k1 ∧ z3)α2̄;−1(k1 ∧ z2)α123;1(z2 ∧ z3),

where we use a semicolon to separate the indexing subscripts (1, 2, 3, 123, etc.) from the

twisting subscripts (±1).
Similarly, we write

z2 =
(z2 ∧ z3)k1 − (z2 ∧ k1)z3

k1 ∧ z3
,

and transform with respect to z2. We get∫
F2
Ψ(k2 ∧ z2)α3̄;−1(k1 ∧ z3)α2̄;−1(k1 ∧ z2)α123;1(z2 ∧ z3)dz2

=
α3̄;−1(k1 ∧ z3)

|k1 ∧ z3|
F(α123;1)

(k2 ∧ k1
k1 ∧ z3

)
F(α2̄;−1)

(k2 ∧ z3
k1 ∧ z3

)
= α13(−1)

(
γ(1, α123;1)γ(1, α2̄;−1)

)−1
α1̄2̄3̄;−2(k2 ∧ k1)α2(k2 ∧ z3)α1(k1 ∧ z3).

Finally, we now write

z3 =
(z3 ∧ k2)k1 − (z3 ∧ k1)k2

k1 ∧ k2
,

and transform with respect to z3. We get∫
F2
Ψ(k3 ∧ z3)α1̄2̄3̄;−2(k2 ∧ k1)α2(k2 ∧ z3)α1(k1 ∧ z3)

= α2(−1)
α1̄2̄3̄;−2(k2 ∧ k1)

|k1 ∧ k2|
F(α2)

(k3 ∧ k1
k1 ∧ k2

)
F(α1)

(k3 ∧ k2
k1 ∧ k2

)
= α23(−1)

(
γ(1, α2)γ(1, α1)

)−1
α2̄;−1(k3 ∧ k1)α1̄;−1(k3 ∧ k2)α3̄;−1(k1 ∧ k2)

= α123(−1)
(
γ(1, α2)γ(1, α1)

)−1
α1̄;−1(k2 ∧ k3)α2̄;−1(k3 ∧ k1)α3̄;−1(k1 ∧ k2).
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Combining three steps together, the Fourier transform on (F2)3 of the distribution

α1(z2 ∧ z3)α2(z3 ∧ z1)α3(z1 ∧ z2) is then

α1̄;−1(k2 ∧ k3)α2̄;−1(k3 ∧ k1)α3̄;−1(k1 ∧ k2)

times

α2(−1)
(
γ(1, α2)γ(1, α3)γ(1, α123;1)γ(1, α2̄;−1)γ(1, α1)γ(1, α2)

)−1
.

Notice that γ(1, α2)γ(1, α2̄;−1) = α2(−1), and so we see that the Fourier transform of

α1(z2 ∧ z3)α2(z3 ∧ z1)α3(z1 ∧ z2) is precisely(
γ(1, α123;1)

∏
i

γ(1, αi)
)−1
α1̄;−1(k2 ∧ k3)α2̄;−1(k3 ∧ k1)α3̄;−1(k1 ∧ k2),

as desired. ∎

11.5. Definition of ϕD, ΛD and ϕH, ΛH. We now follow the notation of § 6.4, and the

reader may find the outline there helpful before reading this and the next subsections.

We define the naive functional ϕD on Π so that its value on the vector f = ⊗i̸=jfij is

given by the formula:

ϕD(f) =
∏
ij∈E

∫
ℙ1(F)

fij(zij)fji(zij)dzij,

where zij = (xij, yij) is any representative of the homogeneous coordinate [xij, yij] on ℙ1,
and denote dzij = xijdyij − yijdxij (note that this notation is different from the previous

section where dz = dx∧ dy). By Lemma 11.3.2 we obtain the formula for the normalized

pairing ΛD:

ΛD = ϕD ·
∏
ij∈O

γ(1, χ2ij)
1
2 . (11.5.1)

Next, we construct an H-invariant functional ϕH, annd relate it to the normalized

functional ΛH. The H-orbits on B\G = (ℙ1)O
can be described by looking at the triads

pointing outwards (or equivalently, inwards) from a given vertex. There is a unique open

dense R-orbit on the product of three copies of ℙ1 indexed by each triad; we denote this

open orbit corresponding to vertex i by Oi. The Haar measure on R induces an invariant

measure on Oi, which has been described in (11.4.1).

Fix a base point p0 = (pij)ij∈O in

∏
iOi ⊂ (ℙ1)O

. and a lifting p̃0 = (p̃ij) ∈ (𝔸2)O
. To

interface with the computation in Lemma 11.4.1, we make our choices as follows:

p̃12 = p̃21 = p̃34 = p̃43 = (0, 1),

p̃13 = p̃31 = p̃24 = p̃42 = (1, 1),

p̃14 = p̃41 = p̃23 = p̃32 = (1, 0).

In words, nonadjacent pair of edges (i.e., edges not sharing any vertex) regardless of

orientation (e.g. 12, 21, 34, 43) are all assigned the same point; these points are 0, 1,∞ and

their “standard” lifts to F2.
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With this choice of p̃0, we define ϕH as the product of the previously defined τ-

functionals from (11.4.2) on the various triads of representations; symbolically,

ϕH(f) =
∏
i

∫
H

fij(p̃ijg̃i)ψi(g̃i)d
ℙgi (11.5.2)

where ψi = (χijχikχil)
−1| · |3/2. By Lemma 11.4.1, we have also

ΛH = ν−2ℙ ϕ
H ×

(∏
ij∈O

γ(1, χ2ij) ·
∏
i∈V

γ
(1
2
, χ−1ij χ

−1
ik χ

−1
il

)
γ
(1
2
, χijχ

−1
ik χ

−1
il

)

γ
(1
2
, χ−1ij χikχ

−1
il

)
γ
(1
2
, χ−1ij χ

−1
ik χil

)) 1
2

= ν−2ℙ ϕ
H ×

(∏
ij∈O

γ(1, χ2ij) · γ
(1
2
, S−

)) 1
2

. (11.5.3)

11.6. Averaging. Again, the reader may refer to the outline in § 6.4. First, the H-average

of ϕD, denoted by (ϕH) ′, is given by

(ϕH) ′(f) =

∫
[gi]∈R\H

[∏
ij∈E

∫
ℙ1
χ−1ij−(g̃i)χ

−1
ij−(g̃j)fij(zijg̃i)fji(zijg̃j)︸ ︷︷ ︸

Pij

dzij

]
d[gi],

where we have written χ−1ij−(g̃) as an abbreviation of χ−1ij−(det g̃); the function Pij is (−2)-

homogeneous in coordinate zij. In other words (ϕH) ′ is the integral of the 15-form

ω1 =

∏
ij∈E Pij · dzij

∏
i∈V dgi

dg
, (11.6.1)

over the space

R\
(
(ℙ1)E ×H

)
, (11.6.2)

where R acts on each ℙ1-factor by h : [x, y] 7→ [x, y]h−1
, and where dg corresponds to the

Haar measure on the diagonal R.

On the other hand the integral (11.5.2) ϕH can be rewritten as an integral of a 12-form

ω2 =
∏
ij∈O

Qij ·
∏
i∈V

d
ℙgi = ν

4
ℙ

∏
ij∈O

Qij ·
∏
i∈V

dgi (11.6.3)

over H, where Qij = fij(p̃ijg̃i)χ
−1
ij−(g̃i) and νℙ is as in (3.2.3).

To relate these, let us first relate more carefully the spaces over which we are integrating.

There is a natural map

A : (ℙ1)E ×H −→ (ℙ1)O,

(zij = zji, gi) 7−→ (zijgi).
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It is R-invariant where R is acting on (ℙ1)E × H as in (11.6.2). We examine its restriction

over the open subset O =
∏
iOi, and descend it to the quotient of the domain by R:

Ā : R\A−1(O) −→ O ≃ H,

where the final identification uses the orbit map for p0, i.e., the inverse of h 7→ p0h. Then

Ā is submersive; (ϕH) ′ is given by an integral over the domain of Ā, whereas ϕH is given

by an integral over its range:

(ϕH) ′ =

∫
R\A−1(O)

ω1 and ϕH =

∫
H

ω2. (11.6.4)

Note that the forms ω1,ω2 are not quite algebraic because they involve the fij that are

simply smooth functions. It is more convenient to relate them in a more algebraic version;

Lemma 11.6.1. Define

Ω̃ = ν−4ℙ
∏
ij∈E

dzij ·
∏
ij∈O

χij−
(
(zij ∧ zik)(zil ∧ zij)(zik ∧ zil)

−1
)
,

which we consider as a differential 6-form on (ℙ1)E, where
(1) In the product over ij ∈ V, we always require {i, j, k, l} = V, and the ordering of k and l is

opposite for any pair of χij and χji;
(2) we choose for ij ∈ E coordinates (xij, yij) in (𝔸2)E with zij the corresponding points in

(ℙ1)E, and write

zij ∧ zik :=

∣∣∣∣xij yij
xik yik

∣∣∣∣ , dzij = xijdyij − yijdxij.

Then we have an equality of differential (regular) 18-forms on A−1(O):

ω̃
alg

1 = A∗(ω
alg

2 )∧ Ω̃,

where ω̃alg

1 is the numerator of (11.6.1), but replacing the fij by an algebraic function falg

ij defined
on a Zariski-open subset, with the same degree of homogeneity, and making the same substitution
in the definition ofωalg

2 .

11.7. Conclusion of the proof, assuming Lemma 11.6.1. From the lemma we readily

deduce that ∫
R\A−1(O)

ω1 =

∫
O≃H

ω2 ·
(∫
Ā−1(p)

Ω̃dg

)
,

for any choice whatsoever of fij. (Just integrate both sides of the lemma, but after multi-

plying by the ratio fij/|f
alg

ij |.) Taking fij to be supported in a very small neighbourhood of

p, and using (11.6.4), we deduce that

(ϕH) ′ = (ϕH)×
(∫
Ā−1(p0)

Ω(p0)

)
.

If we combine this with Lemma 11.6.1, we find that (ϕH) ′ equals ϕH multiplied by the

normalization factor:
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ν−4ℙ

∫
R\(ℙ1)E

∏
ij∈O

χij−
(
(zij ∧ zik)(zil ∧ zij)(zik ∧ zil)

−1
)∏ij∈E dzij

dg
,

with the ordering convention for k and l as stated in Lemma 11.6.1. Combining this with

the known relationships (11.5.1) and (11.5.3) between ΛH, ΛD and ϕH, ϕD completes the

proof of Proposition 6.3.1, hence also Theorem 7.2.1.

11.8. The proof of Lemma 11.6.1. Working Zariski locally on ℙ1 we fix algebraic choices

of homogeneous coordinate representatives z 7→ z̃ and similarly working locally on PGL2

we choose representatives g 7→ g̃ in GL2. Define functions λij Zariski-locally on (ℙ1)E×H
by requiring

λijzijg̃i = p̃ij, λjizijg̃j = p̃ji. (11.8.1)

In view of (11.6.1) and (11.6.3) what we must prove is

∏
ij∈E

χ−1ij−(g̃iλij) =
∏
ij∈O

χij−
(
(zij ∧ zik)(zil ∧ zij)(zik ∧ zil)

−1
)

Writing

g̃−1i =

[
ai bi
ci di

]
.

the condition (11.8.1) then amounts to
λ12(x12, y12) λ13(x13, y13) λ14(x14, y14)

λ21(x12, y12) λ23(x23, y23) λ24(x24, y24)

λ31(x13, y13) λ32(x23, y23) λ34(x34, y34)

λ41(x14, y14) λ42(x24, y24) λ43(x34, y34)



=


(c1, d1) (a1 + c1, b1 + d1) (a1, b1)

(c2, d2) (a2, b2) (a2 + c2, b2 + d2)

(a3 + c3, b3 + d3) (a3, b3) (c3, d3)

(a4, b4) (a4 + c4, b4 + d4) (c4, d4)

 .

Observe that

det g̃−11 = −λ12λ13

∣∣∣∣x12 y12

x13 y13

∣∣∣∣ = −λ13λ14

∣∣∣∣x13 y13

x14 y14

∣∣∣∣ = λ14λ12

∣∣∣∣x14 y14
x12 y12

∣∣∣∣
= λ212

∣∣∣∣x12 y12

x13 y13

∣∣∣∣ ∣∣∣∣x14 y14

x12 y12

∣∣∣∣∣∣∣∣x13 y13
x14 y14

∣∣∣∣ ,
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and so we have

ψ12(g̃1)χ
−2
12 (λ12)|λ12| = ψ

−1
12

([
x12 y12

x13 y13

] [
x14 y14

x12 y12

] [
x13 y13

x14 y14

]−1)
.

Similarly, for any i ̸= j, if we let k, l be the remaining two vertices, and let ϵijkl be the sign

of the permutation that sends (1, 2, 3, 4) to (i, j, k, l), then we have

ψij(g̃i)χ
−2
ij (λij)|λij| = χij(ϵijkl)ψ

−1
ij

([
xij yij
xik yik

] [
xil yil
xij yij

] [
xik yik
xil yil

]−1)
,

where for any i > j we let xij = xji, and so on. This expression is independent of

the ordering of k and l, as expected. Note that we always have χij(ϵijkl)
2 = 1, and so

χij(ϵijkl)χji(ϵjilk) = 1. This concludes the proof.

12. Weyl symmetry: proof of Theorem 5.1.1

We will prove Theorem 5.1.1, namely, that the tetrahedral symbol for principal series

has aW(D6)-symmetry, up to an explicit cocycle.

12.1. A Fourier duality. We continue with the notation of § 7.1 but now specialize to the

casen = 2k, i.e. X is one-half the dimension of its ambient space. LetX⊥
be the orthogonal

complement to X inside Fn with respect to the usual pairing. We choose Haar measures

dx on X and dy on X⊥
so that dxdy = (dµ)n, and dx and dy are Fourier transforms of

each other. Recall from (2.2.5) that χ̌ =
(
χ(−1)γ(1, χ)χ1

)−1
is the Fourier transform of any

quasi-character χwith respect to Ψ and dµ.

Proposition 12.1.1. Suppose n = 2k, all the characters χi have the form α−1
i | · |− 1

2 with the αi
unitary, and the integrals of |x|− 1

2 :=
∏n
i=1|xi|

− 1
2 (where xi are the standard coordinates on Fn)

over both ℙX and ℙX⊥ are convergent. Then we have the following Fourier duality∫
ℙX
χ =

n∏
i=1

χi(−1) ·
∫
ℙX⊥

χ̌.

where
∫
ℙX⊥ χ̌ is, as in (7.1.1), the integral of

∏
i χ̌i over the projectivation of X⊥.

Proof. LetΦ be a Schwartz function on Fn. Let T be the torus (F×)n which we understand

to act on Fn in the obvious way. We equip T with the Haar measure

∏n
i=1 dµ(ti)/|ti| and

for t ∈ T we write

|t| =

n∏
i=1

|ti|, α(t) =

n∏
i=1

αi(ti).

We extend them by zero to functions on Fn.

Let T ′ ⊂ T be any complement to the central scaling copy of F×, e.g. we can take T ′
to

be the copy of (F×)n−1 which scales the first n − 1 coordintaes. The Haar measure on T ′

is such that its product with dµ/| · | on the central copy of F× is the Haar measure on T

above.
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We first prove that we have an equality of absolutely convergent integrals:

JX(α,Φ) :=

∫
T ′×X

α(t)|t|
1
2Φ(tx) =

∫
ℙX
α−1(x)|x|−

1
2 ·

∫
Fn
α(v)|v|−

1
2Φ(v),

with the measures specified above.

We first note that the two integrals on the right are absolutely convergent, the first by

assumption, and the second because it is bounded by a product of one-variable integrals

of the general form

∫
Ω
|a|−

1
2da for a compact set Ω. To verify that the integral on the left

is absolutely convergent, it is sufficient to verify that, for positive Φ, the iterated integral∫
X

∫
T ′
|t|

1
2Φ(tx) <∞.

We can rewrite this as (iterated integrals)∫
ℙX

∫
λ∈F×

∫
T ′
|t|

1
2 |λ|

n
2Φ(λtx) =

∫
ℙX

∫
T

|t|
1
2Φ(tx).

The inner integral is, by what we already noted, finite as long as x lies on no coordinate

hyperplane, and its value is equal to a constant multiple of |x|−
1
2 ; and by assumption∫

ℙX|x|
− 1
2 <∞. So the left hand integral, too, is absolutely convergent.

Since the integral J(α,Φ) is absolutely convergent, it can be evaluted in whatever order

we please, and we may now compute:

JX(α,Φ) =

∫
T ′
α(t)|t|

1
2

∫
X

Φ(tx)dx

=

∫
T ′
α(t)|t|−

1
2

∫
X⊥
Φ̌(t−1y)dy

=

∫
T ′
α−1(t)|t|

1
2

∫
X⊥
Φ̌(ty)dy

= JX⊥(α−1, Φ̌),

where, at the third step, we inverted t, and at the first stage, we used Fourier duality on

Fn for the Schwartz function Φ and the distribution dx/|t|:∫
X

Φ(tx)dx =

∫
X

Φ(x) · dx
|t|

=

∫
X⊥
Φ̌(y) · |t|dy =

∫
X⊥
Φ̌(t−1y)dy.

That is to say, we have proved that∫
ℙX
α−1(x)|x|−

1
2 ·

∫
Fn
α(v)|v|−

1
2Φ(v)

is symmetric under replacement of X by X⊥
, Φ by Φ̌ and α by α−1

. Combined with

another Fourier duality from § 2.3:∫
Fn
α(v)|v|−

1
2Φ(v) =

∫
Fn

F(α| · |− 1
2 )(−v)Φ̌(v)

(2.2.5)

= γ(1, α| · |− 1
2 )−1

∫
Fn
α−1(v)|v|−

1
2 Φ̌(v),
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we have

γ(1, α| · |− 1
2 )−1

∫
ℙX
α−1(x)|x|−

1
2 =

∏
i

αi(−1)

∫
ℙX⊥

α(x)|x|−
1
2 ,

which translates to the desired equality. ∎

12.2. The Weyl symmetry. In order to explain the indexing of characters here, we combine

(4.3.1) and (7.2.3) in the following diagram:

1

4

2 3

x

𝟙

0 𝟛

∞𝟞
y

𝟝
z

𝟜

w

𝟚

where we label each edge with both a blackboard bold number and a coordinate that is

consistent with Theorem 7.2.1, which we proved in § 11.

We express {Π} in terms of the hypergeometric integral (7.2.1). Let us first recall some

abbreviations that we will use. We shall use the following type of abbreviation (given by

an example; cf. § 4.4):

χ23̄4̄ := χ12χ
−1
13 χ

−1
14 , γ23̄4̄ := γ

(1
2
, χ12χ

−1
13 χ

−1
14

)
.

We further abridge the special cases when there are one or two inverted characters:

χli := χjkl̄ =
χijχik

χil
and χ̃li := χj̄k̄l =

χil

χijχik
,

and by extension

γli := γjkl̄ = γ
(1
2
, χli

)
.

The convergence claim of Proposition 6.3.1 (proved in § 10.2) then allows us to apply

Proposition 12.1.1 to (7.2.1), and we arrive at

{Π}

√
γ
(1
2
, S−

)
= ν−1ℙ

[
γ3

2γ
1
4γ

2
3γ

4
1γ

3
1γ

3
4γ

2
4γ

2
1
]−1

×
∫
[x,y,z,w]∈ℙ3(F)

χ̃3
2−(x)χ̃

1
4−(y)χ̃

2
3−(z)χ̃

4
1−(w)χ̃

3
1−(w− x)χ̃3

4−(x− y)χ̃
2
4−(y− z)χ̃2

1−(z−w),

(12.2.1)

where we used (2.2.5)

χ̌ =
(
χ(−1)γ(1, χ)χ1

)−1
,
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and that (
χ3

2χ
1
4χ

2
3χ

4
1
)
(−1) =

(
χ3

1χ
3
4χ

2
4χ

2
1
)
(−1) = 1.

The new integral in (12.2.1) may be interpreted as the integral (7.2.1) with a different set

of χij, the latter obtained by performing what we will call an inv-Regge symmetry through

the pair of opposite edges 𝟚 and 𝟝. (for discussion, see § 4.3; it relates to the usual Regge

symmetry by composition with inversion of each character). The said transformation may

formally be written as follows:

𝟙 7→ 𝟙 ′ :=
𝟙+ 𝟛̄+ 𝟜̄+ 𝟞̄

2
, 𝟚 7→ 𝟚 ′ := 𝟚̄,

𝟛 7→ 𝟛 ′ :=
¯𝟙+ 𝟛+ 𝟜̄+ 𝟞̄

2
, 𝟜 7→ 𝟜 ′ :=

¯𝟙+ 𝟛̄+ 𝟜+ 𝟞̄
2

,

𝟝 7→ 𝟝 ′ := 𝟝̄, 𝟞 7→ 𝟞 ′ :=
¯𝟙+ 𝟛̄+ 𝟜̄+ 𝟞

2
,

where
¯𝟙 means formally negating 𝟙 and so on. Thus, for example, the new character χ𝟙 ′

associated to oriented edge 12 after the transformation satisfies the relation

χ2𝟙 ′ = χ𝟙χ
−1
𝟛 χ

−1
𝟜 χ

−1
𝟞 = χ12χ41χ43χ32,

and similarly for other edges. This does not uniquely determine χ𝟙 ′ and so on: indeed,

the character appearing on the right need not even have a square root. However, this is

not an issue: it is simply a reflection of the fact that the map (5.1.4) is not surjective; rather,

this transformation does determine the (new) integrand in (7.2.1). For example, the first

character χ3
2− in the integrand is the same as

χ ¯𝟙𝟝𝟞̄− := χ−1𝟙 χ𝟝χ
−1
𝟞 | · |− 1

2 ,

and after the inv-Regge symmetry, we have

χ ¯𝟙 ′𝟝 ′𝟞̄ ′− = χ𝟛χ𝟜χ
−1
𝟝 | · |− 1

2 = χ𝟛𝟜𝟝̄− = χ̃2
4−.

Thus, the new edge integral after inv-Regge symmetry is the integral in the expression:

I
E(ℙ1F, ψ

′) = νℙ

∫
χ̃2

4−(x− y)χ̃
3
4−(y− z)χ̃3

1−(z−w)χ̃
2
1−(w− x)χ̃2

3−(x)χ̃
1
4−(y)χ̃

3
2−(z)χ̃

4
1−(w)

which is easily seen equal to the integral in (12.2.1) by exchanging x with z (and using

the fact that χ̃2
4χ̃

3
4χ̃

3
1χ̃

2
1(−1) = 1).

Let {Π ′} be the tetrahedral symbol associated with the new set of characters after per-

forming the said inv-Regge symmetry, and γ(1
2
, (S−) ′) be the corresponding γ-factor (see

§ 5.1). Then we have by (6.3.1)

{Π ′}

√
γ
(1
2
, (S−) ′

)
= ν−2ℙ I

E(ℙ1F, ψ
′).
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Therefore, we showed that

{Π} = {Π ′}×

[
γ3

2γ
1
4γ

2
3γ

4
1γ

3
1γ

3
4γ

2
4γ

2
1
]−1√

γ(1
2
, (S−) ′)√

γ(1
2
, S−)

. (12.2.2)

Proposition 12.2.1. We have an equality up to sign:

{Π} = {Π ′}.

Proof. It amounts to showing that the fraction on the right-hand side of (12.2.2) equals±1.
Indeed, by definition,

γ
(1
2
, S−

)
= γ23̄4̄γ2̄34̄γ2̄3̄4γ2̄3̄4̄ × γ13̄4̄γ1̄34̄γ1̄3̄4γ1̄3̄4̄

× γ12̄4̄γ1̄24̄γ1̄2̄4γ1̄2̄4̄ × γ12̄3̄γ1̄23̄γ1̄2̄3γ1̄2̄3̄,

whereas after the inv-Regge symmetry we find

γ
(1
2
, (S−) ′

)
= γ234̄γ12̄4γ2̄34γ1̄2̄4 × γ1̄2̄3̄γ12̄3γ1̄3̄4̄γ1̄3̄4

× γ1̄2̄4̄γ23̄4γ2̄3̄4̄γ12̄4̄ × γ123̄γ13̄4γ1̄23γ13̄4̄.

As a result, we have (up to sign)√
γ(1
2
, (S−) ′)

γ(1
2
, S−)

=

√
γ234̄

γ2̄3̄4

γ23̄4

γ2̄34̄

γ2̄34

γ23̄4̄

γ13̄4

γ1̄34̄

γ12̄4

γ1̄24̄

γ1̄23

γ12̄3̄

γ12̄3

γ1̄23̄

γ123̄

γ1̄2̄3

= γ234̄γ23̄4γ2̄34γ13̄4γ12̄4γ1̄23γ12̄3γ123̄

= γ4
1γ

3
1γ

2
1γ

3
2γ

2
3γ

1
4γ

2
4γ

3
4,

where we again used the symmetry properties (2.2.6) of the γ-factor; and the fact that(
χ3

2χ
1
4χ

2
3χ

4
1χ

3
1χ

3
4χ

2
4χ

2
1
)
(−1) = 1.

This finishes the proof. ∎

12.3. The proof ofW(D6)-symmetry, completed.

Proof of Theorem 5.1.1. Let us begin with the first claim (1), that {χ}
2

descends to D6 ⊗ F̂×
and isW(D6)-invariant. Formula (7.2.2) shows that {χ}

2
depends only on characters of the

form χ±ijχ
±
ikχ

±
il, which gives the descent. In the language of § 4.3, {χ}

2
is evidently invariant

both by the group of orientation reversals (since these do not change the isomorphism

class of the underlying representation) and also by the group of tetrahedral symmetries

(by the way we defined it). Finally, Proposition 12.2.1 shows that {χ}
2

is invariant by at

least one Regge symmetry; together with the prior groups, this generates all of W(D6).
This concludes the proof of the first claim.

We now pass to claim (2). By (6.3.1) we may take I(χ) to be the integral I
E(ℙ1F, ψ),

multiplied by ν−2ℙ . Then a(w,ψ) = I(w−1χ)/I(χ) is automatically a cocycle of W(D6)
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valued in functions of ψ. By what we have already proved, namely, that {χ}
2

is W(D6)-
invariant, the validity of (5.1.5) for some choice of signs ι(w,χ) follows; it remains to

describe the signs.

Since a is a cocycle, it suffices to compute ι on the generators of W. By Lemma 4.3.3,

it suffices to consider I, T and a single element in R. Some of them are easy: the V-

tetrahedral group T preserves S+ and S−, and evidently also I
E(ℙ1F, ψ), so they have trivial

signs; by (12.2.1), the one particular inv-Regge symmetry in Proposition 12.2.1 also has

trivial sign.

We then compute the sign for w being the edge flipping operations, and it suffices to

assume that the edge is 12, and that all χij are unitary. We will need to use the results

from §§ 14.3 and 14.6 (whose argument is purely analytic based on the integral formula

(6.3.1) and independent of Theorem 5.1.1). In short, (6.3.1) may be written as f(1) for some

smooth function f on Fwhose Mellin transform (as a function on F̂×) is

λ 7−→
[
γ(χ4

1+)γ(χ
3
2+)γ(χ

1
4+)γ(χ

2
3+)
]−1γ(λ⊗A+)

γ(λ⊗ B)
,

where

A = {χ12χ31χ41, χ21χ41χ31, χ43χ31χ23, χ34χ31χ23}

B =
{
χ231, χ42χ41χ31χ23, χ41χ31χ24χ23, 1

}
.

It is clear that exchanging 12 with 21 only changes the constant factor

[
γ(χ4

1+)γ(χ
3
2+)
]−1

in the Mellin transform into

[
γ
(
(χ3

1−)
−1
)
γ
(
(χ4

2−)
−1
)]−1

. Therefore, we have

I(w−1χ)

I(χ)
=

γ(χ4
1+)γ(χ

3
2+)

γ
(
(χ3

1−)
−1
)
γ
(
(χ4

2−)
−1
) (12.3.1)

= χ3
1(−1)χ

4
2(−1)γ(χ

4
1+)γ(χ

3
2+)γ(χ

3
1+)γ(χ

4
2+)

=
(
χ13χ14χ23χ24

)
(−1)γ(χ4

1+)γ(χ
3
2+)γ(χ

3
1+)γ(χ

4
2+).

This shows that the sign for flipping the edge 12 is

(
χ13χ14χ23χ24

)
(−1).

Let sij be the element flipping edge ij. We show here that

ι(sijsiksil, χ) = ι(sijsjkski, χ) = χijχikχil(−1) = χjkl(−1), (12.3.2)

where {i, j, k, l} = V. Then (12.3.1) implies that

I(s−1ik s
−1
ij χ)

I(s−1ij χ)
=
(
χ−1ij χilχkjχkl

)
(−1)γ

(1
2
,
χikχil

χ−1ij

)
γ
(1
2
,
χikχ

−1
ij

χil

)
γ
(1
2
,
χkiχkl

χkj

)
γ
(1
2
,
χkiχkj

χkl

)
=
(
χijχilχkjχkl

)
(−1)γ(χjkl+)γ(χj̄kl̄+)γ(χij̄l+)γ(χijl̄+)

And one can compute other quotients I(s−1il s
−1
ik s

−1
ij χ)/I(s

−1
ik s

−1
ij χ) and so on. On the other

hand, the weights in S+ ∩ sijsiksil(S−) are precisely

χij̄k, χijk̄, χik̄l, χikl̄, χij̄l, χijl̄, χjkl, χj̄kl, χjk̄l, χjkl̄.

The claim (12.3.2) is then an easy (albeit a bit tedious) exercise.
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The longest element w0, which flips all edges simultaneously, can be written as the

product of sijsiksil and sjksklslj. Repeating the same argument for these two elements,

we see that ι(w0, χ) = 1.

Lastly, the inv-Regge symmetry in Proposition 12.2.1 is the element r𝟚𝟝w0 = w0r𝟚𝟝.

Using the fact that ι(w0, χ) = 1 and S+∩w0(S−) = S+, we then can show that ι(r𝟚𝟝, χ) = 1.

Conjugating using T, or more precisely by cyclically permuting {1, 2, 3}, the same also

holds for r𝟙𝟜 and r𝟛𝟞. This finishes the proof. ∎

13. Computations for unramified principal series

In this section, we prove Theorem 5.2.1 by direct computations, partially assisted by a

computer. Using Proposition 6.2.1, the statement to be proved is as follows:

(1− q−2)5 I
V(R/K,φ)L(1, ad) = Tr(q− 1

2σ,ℂ[P]). (13.0.1)

Our proof breaks into several steps:

(1) We first compute I
V(R/K,φ) using the Bruhat–Tits tree of R ∼= PGL2 as a sum of

terms, each of which is a product of several geometric series; see § 13.1.2.

(2) On the dual side, the representation ℂ[P] of Spin12 decomposes in a very nice way

by using the Cartan map. Then the trace of q− 1
2σ can be computed using Weyl

character formula, see § 13.2.4.

At this point, we should be able to prove (13.0.1) by direct comparison, since both sides

are algebraic expressions. However, the length of the expressions seems too large for our

computer to handle efficiently, and so we opt for a more indirect approach using analysis.

Regard both sides of (13.0.1) as functions of on the six-dimensional torus D6⊗𝕋 of possible

σ. We shall then verify that:

(3) Both sides of (13.0.1) have at most simple poles along the locus where some eigen-

value of σ acting on S equals q
1
2 . See Proposition 13.1.5 and § 13.2.4.

(4) These poles have the same residues. See § 13.3 for the (computer-assisted) compu-

tation.

Therefore, the difference between the two sides defines a regular function on D6 ⊗ 𝕋 ≃
𝔾6

m
. To conclude it is constant, we use the following observations:

(5) If we restrict either the left-hand side or the right-hand side to a generic one-

parameter subgroup of the torus D6 ⊗ 𝕋 they remain bounded at infinity. (See

§ 13.1.3 and § 13.2.5).

Here “generic” means that the coordinates of the one-parameter subgroup is permitted

to avoid a finite set of hyperplanes. One readily verifies that a regular function on 𝔾n
m

that

remains bounded along a generic one-parameter subgroup is constant. So the difference

between the left-hand and right-hand sides must be constant. We can conclude by showing

that the desired equality holds at a single value of σ.

Let us set up notation. In the statement of Theorem 5.2.1, we have χ ∈ X0 with image

σ ∈ D6 ⊗ 𝕋; we denote by xij = χij(ϖ) the value of χij at the uniformizer, so that the
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various xij for i < j provide coordinates on
˜D6 ⊗ 𝕋. Let σ ∈ D6 ⊗ 𝕋 be as in the statement

of the theorem, whereas the image of σ under the six standard coordinate functionals are

x12x34, x12x
−1
34 , x13x24, x13x

−1
24 , x14x23, x14x

−1
23 ,

as well as their inverses.

13.1. The computation based on Bruhat–Tits tree. Recall that the quotient set R/K can

be naturally identified with the set of vertices of a tree, namely the Bruhat–Tits tree of

R. The K-orbits of those vertices, in other words, the double quotient K\R/K, can be

identified with ℕ: the identity coset K is sent to 0, and in general we send a double coset

to its distance from the orbit K.

With the notations in § 6.2, we note that the spherical vector vij can be represented

by the eigenfunction of the adjacency matrix of the tree, with eigenvalue q− 1
2 (xij + x

−1
ij ),

where xij = χij(ϖ) is the value of χij at the uniformizer. Recall that for any x ∈ ℂ, the

corresponding Hecke eigenspace is generated by a function on ℕ ∼= K\R/K:

fx(n) =
qx− x−1

(1+ q)(x− x−1)
(q− 1

2x)n +
x− qx−1

(1+ q)(x− x−1)
(q− 1

2x−1)n,

where we, for now, naively normalize fx so that fx(0) = 1. Let fij = fxij .

The space XV
is simply the moduli space of 4 labeled vertices on the Bruhat–Tits tree,

and so R\XV
may be identified with the subspace where the vertex 1 sits at the root (that

is, the trivial coset K). The function φij is simply the value of fij evaluated at the distance

between vertices i and j. Note that the opposite orientation of the edge ij (in other words,

using fji instead of fij) does not change φij, because the formula above is invariant under

x↔ x−1. For definiteness we shall choose the orientations so that i < j, which is consistent

with other parts of this paper.

13.1.1. The generic configuration patterns of 4 vertices on a tree (with 1 at the root) are,

as follows, put into three (not disjoint) classes A, B, C:

1 A

•

2 •

3 4

a

b c

d e

1 B

•

3 •

2 4

a

b c

d e

1 C

•

4 •

2 3

a

b c

d e

(13.1.1)

where any “line” above signifies a connecting path rather than just an edge of the tree,

and the letters a through e are the lengths of the paths. Any of these numbers can be 0; in

particular when c = 0, the three classes coincide, and in this case we will use extra care.

Given any pattern as in (13.1.1), say in class A, with fixed a, . . . , e, then its contribution

towards the vertex integral I
V(X,φ) is given by

f12(a+ b)f13(a+ c+ d)f14(a+ c+ e)f23(b+ c+ d)f24(b+ c+ e)f34(d+ e)
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# Zero conditions Cabcde
1 a = b = c = d = e = 0 1

2 abcde ̸= 0 (1+ q−1)(1− q−1)2

3 c = 0, abde ̸= 0 (1+ q−1)(1− q−1)(1− 2q−1)

4 ab = 0, de ̸= 0, a+ b+ c ̸= 0 (1+ q−1)(1− q−1)

5 ab ̸= 0, de = 0, c+ d+ e ̸= 0 (1+ q−1)(1− q−1)

6 otherwise (1+ q−1)

Table 1. Values of Cabcde

multiplied by the volume µ of the subset of R\XV
that gives this pattern. Note that we

put 1 at the root, which is the same as identifying R\XV
with the double quotient K\X3,

where X3 is indexed by 2, 3, 4, and K acts diagonally.

Since the volume of K is normalized to be 1, and since K acts transitively on the set of

all configurations in class A with the same pattern (that is, same numbers a, . . . , e), the

volume µ is just the number of elements in this set of configurations. It is then easy to

see that µ is of the order qa+b+c+d+e, but with an additional factor Cabcde depending on

whether any of a, . . . , e is 0 or not. For example, if none of the numbers are 0, then there

are (1 + q−1)qa+b different choices to place 2, and then (1 − q−1)qc+d choices to place 3,

and finally (1− q−1)qe choices to place 4. In this case, Cabcde = (1+ q−1)(1− q−1)2. The

values of Cabcde are listed in Table 1.

The classes B and C are treated similarly, but with the complication that when c = 0,

they duplicate cases already considered for A. To eliminate such duplications, we let

Zc = 1/3 if c = 0 and 1 otherwise, and multiply everything in all three classes by Zc.

13.1.2. Thus, I
V(X,φ) is equal to the series∑

a,b,c,d,e

[
f12(a+ b)f13(a+ c+ d)f14(a+ c+ e)f23(b+ c+ d)f24(b+ c+ e)f34(d+ e)

+ f13(a+ b)f12(a+ c+ d)f14(a+ c+ e)f23(b+ c+ d)f34(b+ c+ e)f24(d+ e)

+f14(a+b)f13(a+c+d)f12(a+c+e)f34(b+c+d)f24(b+c+e)f23(d+e)
]
qa+b+c+d+eCabcdeZc,

where a, . . . , e range in ℕ.

13.1.3. Boundedness of the vertex integral. We now show that

(1− q−2)5 I
V(R/K,φ)L(1, ad)

remains bounded when σ varies through a generic one-parameter torus.

Explicitly, let xij = tnij for nij ∈ ℤ; we will prove the boundedness as t → 0 so long

as all the nij are nonzero. The factor L(1, ad) is, up to constants, a product of terms

(1 − q−1t±2nij)−1. Such factors approach 1 as t → 0 if the exponent is positive, 1 − q−1

if it is zero, and zero if it is negative. Therefore, it suffices to prove the boundedness for

I
V(R/K,φ).
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The constants Cabcde and Zc are independent of xij and for abcde ̸= 0 they stay the

same constants respectively. It suffices to look at the summation∑
a,b,c,d,e

f12(a+ b)f13(a+ c+ d)f14(a+ c+ e)

× f23(b+ c+ d)f23(b+ c+ e)f34(d+ e)qa+b+c+d+e,

because the other two summands are similar. Each fij(n) is the sum of two terms:

qxij − x
−1
ij

(1+ q)(xij − x
−1
ij )

(q− 1
2xij)

n,
xij − qx

−1
ij

(1+ q)(xij − x
−1
ij )

(q− 1
2x−1ij )

n,

where the coefficients in front of (q− 1
2xij)

n
and (q− 1

2x−1ij )
n

are uniformly bounded when

xij goes to 0 or ∞. Expanding the products of fijs in the summation, we see that we only

need to bound the series∑
a,b,c,d,e

(q− 1
2 tn12)a+b(q− 1

2 tn13)a+c+d(q− 1
2 tn14)a+c+e

× (q− 1
2 tn23)b+c+d(q− 1

2 tn24)b+c+e(q− 1
2 tn34)d+eqa+b+c+d+e

=
∑

a,b,c,d,e

(
q−a

2 ta(n12+n13+n14)
)(
q−b

2 tb(n12+n23+n24)
)(
q−ctc(n13+n14+n23+n24)

)
×
(
q−d

2 td(n13+n23+n34)
)(
q− e

2 te(n14+n24+n34)
)

=
1

1− q− 1
2 tn12+n13+n14

× 1

1− q− 1
2 tn12+n23+n24

× 1

1− q−1tn13+n14+n23+n24

× 1

1− q− 1
2 tn13+n23+n34

× 1

1− q− 1
2 tn14+n24+n34

. (13.1.2)

Clearly when t → 0 or t → ∞, the above series is a product of 1, 0, (1 − q− 1
2 )−1 or

(1− q−1)−1, hence bounded.

13.1.4. Poles of the vertex integral.

Proposition 13.1.5. The expression I
V(R/K,φ)L(1, ad) viewed as a rational function in variables

xij and q− 1
2 , has poles at hypersurfaces

1− q− 1
2x±ijx

±
ikx

±
il,

where V = {i, j, k, l}, and nowhere else, that is to say, only poles at points where σ has an eigenvalue
q
1
2 in the half-spin representationSev = S.

Proof. Since the summation is a sum of products of geometric series, we know it can only

have simple poles at the hypersurfaces defined by the denominators in (13.1.2), such as

1− q− 1
2x12x13x14, etc. We need to show that the residue vanishes along:

• zeroes of the factors involving 4 different xijs, such as 1 − q−1x13x14x23x24 = 0, as

well as

• zeroes of factors coming from L(1, ad), i.e. 1± q− 1
2x±ij = 0.
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These are checked by routine computer computation (see remark below for some discus-

sion of why this is easier than just checking the original result directly). ∎

Remark 13.1.6. Although the computation cost is highly dependent on the algorithm and

implementation, it is reasonable to expect that the residues are significantly easier to

handle computationally, because the “length” of the symbolic expression, in a vague sense,

is at least expected to be between 1/16 to 1/24 of that of the full tetrahedral symbol: for

example, there are 24 = 16 cases in 1−q−1x±13x
±
14x

±
23x

±
24, and 22×6 = 24 cases in 1±q− 1

2x±ij.

On the other hand, the expression is mainly products of two-term polynomials, therefore

the time complexity of the computation can potentially grow exponentially with respect

to the length.

13.2. The dual side. On the dual side, we consider Spin12, and one of its two half-spin

representations (the one relevant to us is the last fundamental representation of highest

weight ϖ6). We will now describe in more detail the the Lagrangian P in the half-spin

representation Sev
defined by the pure spinors.

13.2.1. Indeed, equip ℂ12 with the anti-diagonal bilinear form

Q(x, y) =

12∑
i=1

xiy12−i+1, (13.2.1)

so that it decomposes into the direct sum of two maximal isotropic spaces

ℂ12 = V6 ⊕ V∗
6 ,

where V6 is the first six coordinates. The exterior algebra ∧•V6 is a module of the

Clifford algebra Cl(ℂ12, Q) (the quotient of the tensor algebra of ℂ12 by the relation

x ⊗ y + y ⊗ x = Q(x, y)). The action of Cl(ℂ12, Q) is as follows: vectors in V6 act by

wedging, and vectors in V∗
6 act by contracting. It is not hard to see (by fixing bases in V6

and V∗
6) that this induces an isomorphism of associative algebras

Cl(ℂ12, Q) ≃ End(∧•V6).

Since up to isomorphism ∧•V6 is the unique simple module of End(∧•V6), we see that as

an abstract Cl(ℂ12, Q)-module this construction is independent of choice of the splitting

(13.2.1) up to isomorphism. Consequently, the automorphisms of (ℂ12, Q) act projectively

upon it, and this actually lifts to a genuine action of Spin12 — this is the 64-dimensional

spin representation. The spin representation decomposes into two 32-dimensional half-

spin representations Sev
and Sodd

, that is, the subspace of even- and odd- degree elements;

in the labeling of Bourbaki [Bou02, Plate IV] these are respectively the representations of

highest weightϖ6 andϖ5.

13.2.2. The distinguished element

1 ∈ ℂ = ∧0V6

which we will denote by v0 for better visibility, is annihilated by the subspace V∗
6 under

the Clifford action, and one readily verifies that this characterizes it up to scalars. From
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the uniqueness claim above, it follows that any Lagrangian (i.e., maximal Q-isotropic)

subspace ofℂ12 annihilates a one-dimensional subspace in∧•V6 under the Clifford action.

A pure spinor is any vector in ∧•V6 belonging to such a line; thus v0 is a pure spinor.

Clearly, pure spinors form a cone P±. Let P×± be the open subset of nonzero pure

spinors. Then the quotient of P×± by scaling, i.e. the associated projective subvariety

of the projectivization of ∧•V6, is evidently identified with the space of all Lagrangian

subspaces of ℂ12, that is to say, the Lagrangian Grassmannian LGr(ℂ12) of ℂ12. This

Lagrangian Grassmanian splits into two orbits under SO12, i.e.

LGr(ℂ12) = LGr+
∐

LGr−.

In fact, two isotropic subspaces A,B belong to the same orbit if and only if the dimension

of A ∩ B is even.

One gets, therefore, a corresponding decomposition

P± = P+ ∪ P−
of the cone of spinors into sub-cones that intersecgt precisely at the origin. In fact, one

readily verifies from the description above that P+ is precisely the subcone of pure spinors

in Sev ⊕ 0 ≃ Sev
and P− is the cone of pure spinors in 0 ⊕ Sodd ≃ Sodd

. Indeed, using the

Spin12-action, it is enough to verify this for a single point of P+ and a single point of P−,

which one does by explicit computation.

Since we mostly care about the cone P+, we denote it simply by P.

Lemma 13.2.3. The vector space ℂ[P]n of degree n homogeneous functions on P is identified with
the irreducible representation of Spin12 of highest weight nϖ6.

Proof. Let P× be the nonzero elements of P. Since the origin has codimension ⩾ 2,

“Hartogs’s theorem” implies that any regular function on P× extends to a regular fnction

on P. Therefore it suffices to compute the regular function on P×. However, as we have

seen above, P× is the total space of a line bundle L over the flag variety LGr+ minus the zero

section.
16

By the Borel–Weil theorem, sections of line bundles on flag varieties are highest

weight representations, with highest weight determined by the isotropy representation.

This shows that ℂ[P]n is the highest weight representation of weight nν for some ν. To

compute ν it is easiest to note that ℂ[P]1 is by definition a quotient of the irreducible

representation Sev
, and so is in fact Sev

; thus ν is the highest weight of Sev
. ∎

13.2.4. Poles of the trace on the spinor cone. Lemma 13.2.3 permits us to compute the character

of ℂ[P] by means of the Weyl character formula:

Tr(q− 1
2σ,ℂ[P]) =

σρ∏
α>0(σ

α − 1)

∑
w∈W

(−1)ℓ(w)σw(ρ)

1− q− 1
2σw(ϖ6)

.

Note that this function is W-invariant, and so none of the term σα − 1 contributes to a

pole (because you can conjugate any given α away). Therefore, the poles are only given

by 1−q− 1
2σw(ϖ6)

. We see that the hypersurfaces supporting those poles coincide with the

16
The square has a nice description: L⊗(−2)

is the pullback of the determinant bundle over LGr+.
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ones on the automorphic side. Moreover, just as in Remark 13.1.6, it is easy to see that the

residues are significantly simpler expressions: there are 32 weights in S, so the symbolic

length of a residue is only 1/32 of the full trace.

13.2.5. We compute the behavior of the trace whenσ = tµ for some coweightµ. It suffices

to assume that µ is dominant by W-invariance, and since it is enough to consider generic
directions, we assume that µ is strictly dominant. Looking at each summand in the trace,

and we want to show that for any w ∈W, the limit of[
1∏

α>0(t
⟨α,µ⟩ − 1)

] [
t⟨ρ+w(ρ),µ⟩

1− q− 1
2 t⟨w(ϖ6),µ⟩

]
=

[
1∏

α>0(1− t
−⟨α,µ⟩)

] [
t⟨−ρ+w(ρ),µ⟩

1− q− 1
2 t⟨w(ϖ6),µ⟩

]
(13.2.2)

when t→ 0 or ∞ is bounded.

We first consider the case t→ 0. In this case, we use the left-hand side of (13.2.2). Since

µ is strictly dominant, then we have (t⟨α,µ⟩ − 1)→ −1 for any positive root α, and

t⟨ρ+w(ρ),µ⟩ −→ 0 or 1,

because ρ+w(ρ) is a sum of positive roots. Lastly, the denominator 1−q− 1
2 t⟨w(ϖ6),µ⟩

goes

to either 1 or 1 − q− 1
2 or ∞, and so Tr(q− 1

2σ,ℂ[P]) stays uniformly bounded when t→ 0.

The case t→∞ is similarly proved by using the right-hand side of (13.2.2).

13.3. Comparison using residues. We have now located the poles of both sides of (13.0.1).

They are, as we have seen, located on the locus where an eigenvalue of σ on S coincides

with q
1
2 . The corresponding residues, on either side, can be computed using a computer

as well — this computation is substantially smaller than computing the full expressions

— and it then turns out these residues can be explicitly factorized.

For example, we record the residue of both sides of (13.0.1) when 1 − q− 1
2σ−ϖ6 =

1− q− 1
2 (x12x13x14)

−1 = 0:

− L(1, ad)x423x
4
24x

4
34

[
(x212 − 1)(x

2
13 − 1)(x

2
14 − 1)(x12x13x24 − x34)

(x12x13x34 − x24)(x12x13 − x24x34)(x12x13x24x34 − 1)(x12x14x23 − x34)

(x12x14x34 − x23)(x12x14 − x23x34)(x12x14x23x34 − 1)(x13x14x23 − x24)

(x13x14x24 − x23)(x13x14 − x23x24)(x13x14x23x24 − 1)
]−1

,

in which we really meant to replace, for example, x12 by q− 1
2 (x13x14)

−1
(so that q− 1

2 is

not treated as a variable but a constant); however, replacing q− 1
2 by x12x13x14 makes the

expression look more symmetric.

This completes the proof, according to the general plan outlined at the start of the

section.

14. Hypergeometric evaluations of the tetrahedral symbol

Our goal here is to express the tetrahedral symbol in terms of generalized hypergeo-

metric functions, proving both Proposition 7.3.1 and the formulas given in § 7.4.
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14.1. Classical hypergeometric functions and Mellin–Barnes integrals. For positive in-

tegers k < l and parameters a = (a1, . . . , al) ∈ ℂl and b = (b1, . . . , bk) ∈ ℂk, the

generalized hypergeometric function of parameters a and b is the analytic continuation

of the series

lFk(a, b; x) = lFk

(
a1, . . . , al
b1, . . . , bk

∣∣∣ x) :=

∞∑
n=0

∏l
j=1(aj)n∏k
j=1(bj)n

xn

n!

,

where (a)n is the rising factorial:

(a)0 := 1, (a)n := a(a+ 1) · · · (a+ n− 1).

Classical 6j symbols (i.e., compact R and F = ℝ) enjoy various interpretations at the

value at the singular point x = 1 of 4F3(a, b; x) for certain a and b; our goal is to describe

a similar result for the tetrahedral symbols for F = ℝ.

Using Mellin transform and its inverse, one can rewrite lFk into an Mellin–Barnes type

integral (with some assumptions on the parameters):

Γ(a1) · · · Γ(al)
Γ(b1) · · · Γ(bk)

lFk(a, b; x) =
1

2πi

∫c+i∞
c−i∞

Γ(a1 + s) · · · Γ(al + s)
Γ(b1 + s) · · · Γ(bk + s)

Γ(−s)(−x)sds,

where the vertical line (c − i∞, c + i∞) separates the poles of all Γ(aj + s) from those

of Γ(−s).17

One can readily generalize the notion of Mellin–Barnes integrals to any local

field because Γ -functions are essentially the local L-factors over ℝ (cf. § 2). Our procedure

will, in fact, be to first derive a Mellin–Barnes representation (in this generalized sense)

of the tetrahedral symbol in the principal series case, and then derive the various desired

consequences from it.

14.2. Review on Mellin transforms. We review the properties of Mellin transforms over

an arbitrary local field.

Lemma 14.2.1. Suppose a, b > 0 and a+ b < 1, then we have equality∫
F

|x|a−1|1− x|b−1dx =
γ(a+ b)

γ(a)γ(b)
,

where the left-hand side is absolutely convergent.

Proof. Since a+ b− 2 < −1 (resp. a− 1 > −1, resp. b− 1 > −1), the integral is absolutely

convergent near ∞ (resp. 0, 1). Thus the whole integral is absolutely convergent. For the

equality, we note that∫
F

|x|a−1|1− x|b−1dx · γ(a+ b)−1
(2.2.7)

=

∫
F

|x|a−1|1− x|b−1dx

∫
F

|y|a+b−1Ψ(y)dy

=

∫
F

∣∣∣∣xy
∣∣∣∣a−1∣∣∣∣1− x

y

∣∣∣∣b−1d(xy)
∫
F

|y|a+b−1Ψ(y)dy

=

∫
F

|x|a−1|y− x|b−1dx

∫
F

Ψ(y)dy,

17
We will not use this general fact here; in the case relevant to us, namely 4F3, details are contained in

§ 14.4.
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which is the Fourier transform of the convolution of |x|a−1 and |x|b−1. Here we used the

fact that 0 < a + b < 1 implies that the integral form of γ(a + b)−1 is also absolutely

convergent, hence we are free to use Fubini theorem to manipulate the integrals above.

Applying (2.2.7) again we arrive at∫
F

|x|a−1|1− x|b−1dx · γ(a+ b)−1 = γ(a)−1γ(b)−1,

and this finishes the proof. ∎

Definition 14.2.2. For a function f on F×, we define its Mellin transform to be the integral

Mf(µ) =

∫
F×
f(x)µ(x)d×x,

assuming the integral is absolutely convergent for all (unitary) characters µ of F×. We

will allow ourselves to speak of the integral for quasi-characters by means of analytic

continuation, when applicable. When F = ℝ, we denote M+
f (s) := Mf(| · |s) and M−

f (s) :=

Mf(sgn| · |s). In the reverse direction, given a function f̂(χ) on the character group F̂×, we

define its inverse Mellin transform as

M−1

f̂
(x) =

∫
F̂×
f̂(χ)χ(x)dχ,

where the measure dχ is dual to d
×x, which amounts to asking that this is indeed inverse

to the Mellin transform.

Lemma 14.2.3. Suppose that f is an L1-function on F× with the property that Mf(µ) defines
an L1-function on the character group of F×. Then the inverse Mellin transform of Mf defines a
continuous function that agrees with f almost everywhere.

Proof. This is a standard fact of harmonic analysis. In the F = ℝ case, using the fact that

ℝ× = ℝ>0× {±1} and change of variables, the lemma is a standard precise form of Fourier

inversion; see for example [SW71, Corollary 1.21]. The F = ℂ case can be similarly derived

from the fact that ℂ× = ℝ>0 × S1. The nonarchimedean case is relatively easy to deduce

because continuous functions are locally constant. It can be proved by first verifying that

the inverse Mellin transform of Mf defines a continuous function, call it f1, and then

verifying that the pairings of f or f1 with the characteristic function of any compact open

subset of F× coincide. We leave the details to the reader. ∎

For a nonempty open interval J ⊂ ℝ, and let L1J be the functions on F× with the property

that

∫
F× |f(x)| · |x|

σ
d
×x < ∞ whenever σ ∈ J. In practice, we will be interested in the

interval J = (0, 1
2
). Many statements can be reduced to the case when J contains zero,

simply by multiplying f by a suitable power of |x|.

Lemma 14.2.4. For f ∈ L1J , the Mellin transform Mf(µs) is absolutely convergent for a character
µ and any s whose real part belongs to J.

When we write Mf for f ∈ L1J , we will always regard it as a function on the set of quasi-

characters specified by this Lemma. Next, L1J behaves well with respect to convolution:
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Lemma 14.2.5. If f1, f2 ∈ L1J , the multiplicative convolution

f(y) :=

∫
F×
f1(x)f2(yx

−1)d×x

is absolutely convergent for almost all y, and also defines an element of L1J . Moreover, the Mellin
transforms are multiplicative: we have

Mf = Mf1Mf2 ,

where, as noted above, we regard both sides as functions on quasi-characters µs where the real part
of s lies in J.

We omit the straightforward proof.

Lemma 14.2.6. For two characters α and β of F×, the product α(x)β−(1−x) belongs to the space
L1
(0, 12 )

defined in Lemma 14.2.5. Its Mellin transform is given by

Mα(x)β−(1−x)(µs) =
γ(αβ+µs)

γ(αµs)γ(β+)
,

valid for ℜ(s) ∈ (0, 1
2
).

Proof. The proof of Lemma 14.2.1 still works: the real part of the exponent of quasi-

character αµs is between 0 and
1
2
, while that of β+ is

1
2
, and so the sum of two exponents

has real part between 0 and 1; this way the relevant integrals all converge absolutely. ∎

14.3. Hypergeometric functions over local fields. The edge integral we have described

in (7.2.1), up to scaling by powers of νℙ, has the following alternative form by lettingw = 1

(see § 11 for how the measure is properly dealt with):

I =

∫
F3
α1−(x)α2−(1− x)α3−(x− y)α4−(y− z)α5−(y)α6−(z)α7−(z− 1),

for certain characters αi : F
× → ℂ×

, and the measure is the usual additive Haar measure

dxdydz, which we omit for simplicity. We will explain how to evaluate this integral in

terms of a generalized hypergeometric function. Note that we have already proven that

I is absolutely convergent, and thereby, by Fubini’s theorem, it can be evaluated as an

iterated integral, in any way we please.

Use the shorthand α12 = α1α2, etc., and rewrite the integral as

I =

∫
F3
α13−−(x)α2−(1− x)α3−(1− y/x)α4−(1− z/y)α45−−(y)α67−−(z)α7−(1− 1/z).

We are going to repeatedly apply Lemma 14.2.5 with the interval J taken to be (0, 1
2
).

First of all, we take f1(x) = α13(x)α2−(1− x) and f2(x) = α3−(1− x); they both belong to

L1J by Lemma 14.2.6, and therefore their multiplicative convolution

f123(y) :=

∫
F

α13−−(x)α2−(1− x)α3−(1− y/x)dx

(
=

∫
F

α1−(x)α2−(1− x)α3−(x− y)dx

)
.
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defines also a class in L1J . By Lemma 14.2.5 and Lemma 14.2.6 we have

Mf123(µs) =
γ(α13α2+µs)

γ(α13µs)γ(α2+)
· γ(α3+µs)

γ(µs)γ(α3+)
.

where we assume that the real part of s belongs to (0, 1
2
); we will continue to impose this

assumption below.

Multiplication by a unitary character of course preserves the property of belonging to

L1J . Consequently, we can apply Lemma 14.2.5 to analyze the multiplicative convolution

f12345(z) of f123(y) · α45(y) and α4−(1 − y). Then f12345 belongs to L1J and its Mellin

transform is given by

Mf12345(µs) = Mf123(z)α45(z)(µs)Mα4−(1−z)(µs)

=
γ(α12345+µs)

γ(α1345µs)γ(α2+)
· γ(α345+µs)

γ(α45µs)γ(α3+)
· γ(α4+µs)

γ(µs)γ(α4+)
.

Finally, multiplying f12345(z) by α67(z) and then convolving with α7−(1 − z) gives, for

exactly the same reason as before, a function f1234567(w) ∈ L1J such that

Mf1234567(µs) = Mf123(w)α4567(w)(µs)Mα67(w)α4−(1−w)(µs)Mα7−(1−w)

=
γ(α1234567+µs)

γ(α134567µs)γ(α2+)
· γ(α34567+µs)

γ(α4567µs)γ(α3+)
· γ(α467+µs)

γ(α67µs)γ(α4+)
· γ(α7+µs)

γ(µs)γ(α7+)
,

which we rewrite as[
γ(α2+)γ(α3+)γ(α4+)γ(α7+)

]−1γ(α1234567+µs)γ(α34567+µs)γ(α467+µs)γ(α7+µs)
γ(α134567µs)γ(α4567µs)γ(α67µs)γ(µs)

.

(14.3.1)

Note that f1234567(w) is defined by replacing α7−(z− 1) by α7−(z−w) in the definition

of I. Therefore, the edge integral I is the value at 1 of a function f1234567 whose Mellin

transform is given by (14.3.1).

Moreover, the Mellin inversion formula is applicable, in the following form:

I = f1234567(1) =

∫
Mf1234567(µs)dµ, (14.3.2)

where 0 < s < 1
2

is any fixed number, and the integral is taken over all charactersµ (see § 2.1

for the measure onµ). To verify the applicability of the Mellin inversion formula, we verify

that Mf1234567(µs) is absolutely integrable as a function of µ and invoke Lemma 14.2.3. We

will check this absolute integrability in the nonarchimedean case, leaving the archimedean

cases to the reader; a similar check for F = ℝ is carried out after (14.4.2).

Suppose, then, that the cardinality of the residue field of F equals q. Let O ⊂ F be the

ring of integers. The decomposition F× ≃ O× × ℤ (after fixing a uniformizer) gives a

corresponding decomposition

F̂× ≃ Ô× × S1.

As usual, we say that a character µ of O×
has conductor n if it is trivial on 1+ϖnO but not

on any larger subgroup of this form. The number of such characters equals q(1− 2/q) for
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n = 1 and qn(1 − 1/q)2 for n > 1; all that matters is that it is O(qn). On the other hand,

the formulas of § 2.2.3 imply that the the absolute value of the term

γ(α1234567+µs)γ(α34567+µs)γ(α467+µs)γ(α7+µs)

γ(α134567µs)γ(α4567µs)γ(α67µs)γ(µs)

from (14.3.1) equals q−2n
when µ has conductor n, where n is chosen strictly larger than

the conductor of anyαi (this ensures that the conductor of anyα•µ involved in the fraction

above equals the conductor of µ). Therefore, the integral of (7.2.2) is absolutely bounded

by a constant multiple of

∑
n⩾0 q

n · q−2n
and is absolutely convergent. This concludes

our justification of (14.3.2).

14.4. Relationship with classical 4F3. When F = ℝ, we may use (14.3.1) to relate the

tetrahedral symbol for the principal series with generalized hypergeometric functions.

For simplicity, we assume characters α1234567+, etc. in the numerator of (14.3.1) and

α134567, etc. in the denominator are of the forms | · |aj and | · |bj (j = 1, . . . , 4) respectively,

where

aj ∈
1

2
+ iℝ, bj ∈ iℝ,

which is the case that is relevant to evaluating the tetrahedral symbol for unramified

characters with F = ℝ. The general case can be analyzed similarly, where one adds

various signs; the answer itself will look different because the contours of integration

used later in the argument need to be chosen differently.

The Mellin transform over ℝ×
consists of two disjoint components M+

and M−
(see

Definition 14.2.2). For a function f on ℝ×
, write f = f+ + f−, where f+ is even and f− is

odd, then we have

M−
f+ = M+

f− = 0.

Moreover,M+
f+ (resp.M−

f−) is twice the classical Mellin transform of f+|(0,∞) (resp. f−|(0,∞)).

As a result, the sum M+
f +M−

f is twice the classical Mellin transform of the function f|(0,∞).

Therefore, to recover the value of f = f1234567 at 1, we can use the inverse Mellin

transform on the sum of

M+
f (s) =

4∏
j=1

γ(aj + s)

γ(aj − bj)γ(bj + s)

and

M−
f (s) =

4∏
j=1

γ−(aj + s)

γ(aj − bj)γ−(bj + s)
,

where γ−(µ) means γ(µ · sgn) for any quasi-character µ.

We will now use the relations from (2.2.2):

γ±(s)−1 = Γ(s)(I−s ± Ī−s) = (2π)−sΓ(s)(i−s ± is),
γ±(s) = Γ(1− s)(Is−1 ± Īs−1) = (2π)s−1Γ(1− s)(is−1 ± i1−s)
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with I := 2πi and is := eiπs/2, to rewrite M+
f and M−

f in terms of Γ -functions and expo-

nential functions:

M±
f =

4∏
j=1

(2π)aj−bj−1

γ(aj − bj)︸ ︷︷ ︸
=:A

×
4∏
j=1

Γ(bj + s)Γ(1− aj − s)

4∏
j=1

(i−bj−s ± ibj+s)(iaj+s−1 ± i1−aj−s)︸ ︷︷ ︸
=:B±

Therefore, to compute M+
f (s) +M−

f (s), we expand

A(B+ + B−) =

4∑
k=−4

Cki
2ks =

2∑
k=−2

C2ki
4ks

(14.4.1)

in powers of is, where the Cks are various constants that are sums of products of

(2π)aj−bj−1, i±aj, i±bj and γ(aj − bj); for the last equality, it is easy to see that Ck = 0 for

all odd k because terms from B+ and from B− cancel.

Now fix 0 < σ < 1
2
. Taking classical inverse Mellin transform, we have

f(x) =

2∑
k=−2

C2k

4πi

∫σ+i∞
σ−i∞

4∏
j=1

Γ(bj + s)Γ(1− aj − s)i
4ksx−sds (14.4.2)

where we take the straight line contour from −σ− i∞ to −σ+ i∞. For simplicity, we will

restrict to x ∈ ℝ>0, since we will be most interested in the value at x = 1; in particular,

power functions are well-defined.

In order to justify the application of inverse Mellin transform, observe that the integral

is indeed absolutely convergent. To handle the asymptotics, it is convenient to rewrite,

using the relation Γ(s)Γ(1− s) = π
sin(πs)

, the product of Γ -functions as

4∏
j=1

Γ(1− aj − s)

Γ(1− bj − s)

π

sin(π(bj + s))
(14.4.3)

and use the fact ([TE51]) that the ratio Γ(s+a)/Γ(s+b) is asymptotic to sa−b so long as we

restrict the argument of s to be within (−π + δ, π − δ) for any fixed δ > 0.18

In particular,

when s is restricted to any vertical line, this same ratio is bounded by (1 + |t|)ℜ(a)−ℜ(b)

where t is the imaginary part of s. Consequently, the integrand has the asymptotic

behavior |t|−2, and so is absolutely convergent. Changing variables s 7→ −s, k 7→ −k, we

obtain

f(x) =

2∑
k=−2

C−2k

4πi

∫−σ+i∞
−σ−i∞

4∏
j=1

Γ(bj − s)Γ(1− aj + s)i
4ksxsds. (14.4.4)

The integral

G4,44,4

(
a1, . . . , a4
b1, . . . , b4

∣∣∣ x) :=
1

2πi

∫
L

4∏
j=1

Γ(bj − s)Γ(1− aj + s)x
s
ds (14.4.5)

18
That is to say, sb−aΓ(s+ a)/Γ(s+ b) approaches 1 as s approaches infinity in this region.
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taken along certain admissible paths L, is known as a Meĳer G-function. To understand

its connection with generalized hypergeometric functions, we need to review some of its

properties. The general theory of G-functions is rich, but what we need can be easily

derived from basic complex analysis.

For our choice of L, namely, the vertical contour with real part −σ, all the poles of

Γ(1 − aj + s) appears to the left of L and those of Γ(bj − s) to the right. We then use

residues to evaluate the integral; but we will shift the contour in different ways according

to whether |x| is less than unity or greater than unity.

We first assume that |x| ⩽ 1. In this case, we shift the integral to the line where the real

part of x equals some large positive real c, where c is chosen (“pole avoidance”) so that its

distance from the series of points bj, bj + 1, . . . is at least 1/8 (which is possible because j

ranges from 1 to 4). In order to shift contours in this way, we consider the segment of our

integral from −σ − iT to −σ + iT and connect it to the line segment from c − iT to c + iT

by means of horizontal segments. The same reasoning that is given after (14.4.3) shows

that, as we take T → ∞, the contribution of both horizontal segments vanish. Moreover,

if we then take c → ∞, the contribution of the right-hand segment vanishes too; here

we use both the fact that |x| ⩽ 1 and the uniformity of the asymptotic for
Γ(s+a)
Γ(s+b)

in the

relevant region. The importance of the choice of c is to ensure that the term sin(π(bj− s))

is bounded away from zero.

This shows that when |x| ⩽ 1, the integral (14.4.5) is equal to the negative of the series

whose terms are the residues at all bj + n, in the sense that one converges absolutely if

and only if the other does. More explicitly, this series is

−

∞∑
n=0

4∑
h=1

(−1)n
∏4
j=1 Γ(1− aj + bh + n)

∏
j̸=h Γ(bj − bh − n)

n!

xbh+n

= −

4∑
h=1

4∏
j=1

Γ(1− aj + bh)
∏
j̸=h

Γ(bj − bh)x
bh ×

∞∑
n=0

∏4
j=1(1− aj + bh)n∏
j̸=h(1− bj + bh)n

xn

n!

.

Using the definition of 4F3, we then obtain

G4,44,4

(
a1, . . . , a4
b1, . . . , b4

∣∣∣ x) = −

4∑
h=1

4∏
j=1

Γ(1− aj + bh)
∏
j̸=h

Γ(bj − bh)x
bh

× 4F3
(
1+ bh − aj, j = 1, . . . , 4

1+ bh − bj, j ̸= h

∣∣∣ x) .
The series defining these 4F3 converge absolutely when |x| ⩽ 1, and so the whole equality

is valid in the same domain.

Similarly, when |x| ⩾ 1, we shift the contour to the left, i.e. choose c to be very negative,

now incurring poles when s = ah − 1− n for n ⩾ 0. The resulting formula is

G4,44,4

(
a1, . . . , a4
b1, . . . , b4

∣∣∣ x) =

4∑
h=1

4∏
j=1

Γ(1− ah + bj)
∏
j̸=h

Γ(ah − aj)x
ah−1
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× 4F3
(
1− ah + bj, j = 1, . . . , 4

1− ah + aj, j ̸= h

∣∣∣ x−1) .
This in particular also allows us to analytically continue the G-function for all x within

our chosen domain containing 1.

Finally, we go back to (14.4.4). For the summand where k = 0, the integral involved

is exactly the Meĳer G-function discussed above. For any k ̸= 0, we may use the same

contour integral argument and the fact that i4kn = 1 for any n ∈ ℤ, and see that (we use

the |x| ⩽ 1 formula here for example)

1

2πi

∫−σ+i∞
−σ−i∞

4∏
j=1

Γ(bj − s)Γ(1− aj + s)i
4ksxsds

= −

4∑
h=1

4∏
j=1

Γ(1− aj + bh)
∏
j̸=h

Γ(bj − bh)i
4kbhxbh ×

∞∑
n=0

∏4
j=1(1− aj + bh)n∏
j̸=h(1− bj + bh)n

xn

n!

.

Combining everything together, we have for |x| ⩽ 1:

f(x) =
1

2

4∑
h=1

Bh(x) 4F3

(
1+ bh − aj, j = 1, . . . , 4

1+ bh − bj, j ̸= h

∣∣∣ x) ,
where

Bh(x) = −xbh
4∏
j=1

Γ(1− aj + bh)
∏
j̸=h

Γ(bj − bh)

(
2∑

k=−2

C−2ki
4kbh

)
.

Recall by (14.4.1), we have

2∑
k=−2

C−2ki
4kbh = A(B+ + B−)|s=−bh .

But for B−, we have

B−|s=−bh =

4∏
j=1

(i−bj+bh − ibj−bh)(iaj−bh−1 − i1−aj+bh) = 0

because when j = h the factor

i−bh+bh − ibh−bh = 0.

Therefore, only the term AB+ survives, and so we can simplify:

Bh(x) = −2xbh
4∏
j=1

(2π)aj−bj−1

γ(aj − bj)

4∏
j=1

Γ(1− aj + bh)(i
aj−bh−1 + i1−aj+bh)

∏
j̸=h

Γ(bj − bh)(i
−bj+bh + ibj−bh)

(2.2.2)

= −2xbh
4∏ ′

j=1

γ(aj − bh)

γ(aj − bj)γ(bj − bh)
,
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where

∏ ′
denotes that we omit any evaluations of γ at polar points; in the case above,

this means γ(bj − bh) for j = h. As a result, we finally have for |x| ⩽ 1:

f(x) = −

4∑
h=1

xbh

 4∏ ′

j=1

γ(aj − bh)

γ(bj − bh)γ(aj − bj)


4F3

(
1+ bh − aj, j = 1, . . . , 4

1+ bh − bj, j ̸= h

∣∣∣ x) .
(14.4.6)

Similarly, for |x| ⩾ 1, we have

f(x) =
1

2

4∑
h=1

Ah(x) 4F3

(
1− ah + bj, j = 1, . . . , 4

1− ah + aj, j ̸= h

∣∣∣ x−1) ,
where

Ah(x) = x
ah−1

4∏
j=1

Γ(1− ah + bj)
∏
j̸=h

Γ(ah − aj)

(
2∑

k=−2

C−2ki
4k(ah−1)

)
,

and we may simplify it as

f(x) =

4∑
h=1

xah−1

 4∏ ′

j=1

γ(ah − bj)

γ(ah − aj)γ(aj − bj)


4F3

(
1− ah + bj, j = 1, . . . , 4

1− ah + aj, j ̸= h

∣∣∣ x−1) .
(14.4.7)

14.5. The tetrahedral symbol as a convolution of γ-factors, for general F. Return for a

moment to the case of general F. We shall prove the formula Proposition 7.3.1, which we

recall here:

{Π} = ν−1ℙ

∫
µ

γ(1
2
+ ϵ,A⊗ µ)γ(1− ϵ, B−1 ⊗ µ−1)√

γ(1
2
, A⊗ B−1)

dµ

for four-element sets of characters A,B.

We shall apply the results of the former subsection with the following αi

α1 = χ12χ14χ
−1
13 , α2 = χ12χ13χ

−1
14 , α3 = χ21χ24χ

−1
23 , α4 = χ42χ43χ

−1
41 ,

α5 = χ42χ41χ
−1
43 , α6 = χ41χ43χ

−1
42 , α7 = χ34χ31χ

−1
32 .

We compute the following combinations:

α1234567 = χ12χ31χ41, α34567 = χ21χ41χ31, α467 = χ43χ31χ23, α7 = χ34χ31χ23,

α134567 = χ
2
31, α4567 = χ42χ41χ31χ23, α67 = χ41χ31χ24χ23.

We now rewrite (14.3.1) in the form[
γ(α2+)γ(α3+)γ(α4+)γ(α7+)

]−1γ(12 + s,A ′ ⊗ µ)
γ(s, B ′ ⊗ µ)

, (14.5.1)

where we are to integrate over characters µ and a fixed real s between 0 and
1
2
; and

A ′ = {α1234567, α34567, α467, α7} = χ21χ41χ31 ⊗ {χ212, 1, χ43χ23χ12χ14, χ34χ23χ12χ14},

B ′ = {α134567, α4567, α67, 1} = χ
2
31 ⊗ {1, χ42χ41χ13χ23, χ41χ13χ24χ23, χ

2
13}.
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Now, (14.5.1), when integrated over µ, is invariant under a common translation ofA ′, B ′
.

Doing such translating A ′
and B ′

both by χ13, we arrive at:

A := χ13 ⊗A ′ =
(
χ41 ⊗ {χ12, χ21}

)
∪
(
χ23 ⊗ {χ43, χ34}

)
,

B := χ13 ⊗ B ′ = {χ31, χ13} ∪
(
χ41χ23 ⊗ {χ42, χ24}

)
.

Using the fact that γ(µ+)γ(µ
−1
− ) = µ(−1), we can replace the inverse of γ(s, B ⊗ µ) by

γ(1 − s, B−1 ⊗ µ−1). Consequently we rewrite the edge integral in (7.2.1) as the inverse

Mellin transform of

µ 7−→
γ(1
2
+ s,A⊗ µ)γ(1− s, B−1 ⊗ µ−1)√

γ(1
2
, S∗)

,

evaluated at 1, where S∗ is modified from S− by including the eigenspaces of eigenvalues

x12x13x
−1
14 , x21x

−1
23 x24, x

−1
41 x42x43, x31x

−1
32 x34 (cf. § 4.4) instead of their inverses; these arise

from the γ(α2+), . . . , γ(α7+) factors. To conclude we note that A⊗ B−1
is exactly equal to

S∗ (the underlined ones below are those in S∗ but not S−):

α1234567 α34567 α467 α7

α−1
134567 χ12χ13χ

−1
14 χ−112 χ13χ

−1
14 χ−131 χ

−1
32 χ

−1
34 χ−131 χ

−1
32 χ34

α−1
4567 χ−121 χ

−1
23 χ24 χ21χ

−1
23 χ24 χ−141 χ

−1
42 χ43 χ−141 χ

−1
42 χ

−1
43

α−1
67 χ−121 χ

−1
23 χ

−1
24 χ21χ

−1
23 χ

−1
24 χ−141 χ42χ43 χ−141 χ42χ

−1
43

1 χ12χ
−1
13 χ

−1
14 χ−112 χ

−1
13 χ

−1
14 χ31χ

−1
32 χ

−1
34 χ31χ

−1
32 χ34

(14.5.2)

14.6. The tetrahedral symbol for the case F = ℝ. The F = ℝ case is the most interesting

when combined with our discussion in § 14.4. We assume for simplicity that χij (ij ∈ O)

is of the form | · |Jij for Jij ∈ iℝ such that Jij + Jji = 0. Using (4.3.1), we also write

J𝟙 = J12, J𝟚 = J31, and so on. Then with ai, bi (i = 1, . . . , 4) as in § 14.4, we have

a1 = J𝟙𝟚𝟛̄ +
1

2
, a2 = J ¯𝟙𝟚𝟛̄ +

1

2
, a3 = J𝟚𝟜̄𝟞 +

1

2
, a4 = J𝟚𝟜𝟞 +

1

2
,

b1 = J𝟚𝟚, b2 = J𝟚𝟛̄𝟝̄𝟞, b3 = J𝟚𝟛̄𝟝𝟞, b4 = 0,

where J𝟙𝟚𝟛̄ means J𝟙 − J𝟚̄ − J𝟛, and so on. Plugging in the formula (14.4.6) and simplifying

using the properties of γ and L-factors from § 2, we have

{Π}

√
L
(1
2
, S
)
= −

L(1
2
, S∗1)

γ(J𝟚̄𝟛̄𝟝̄𝟞)γ(J𝟚̄𝟛̄𝟝𝟞)γ(J𝟚̄𝟚̄)
4F3

(
J ¯𝟙𝟚𝟛 +

1
2
, J𝟙𝟚𝟛 +

1
2
, J𝟚𝟜𝟞̄ +

1
2
, J𝟚𝟜̄𝟞̄ +

1
2

J𝟚𝟛𝟝𝟞̄ + 1, J𝟚𝟛𝟝̄𝟞̄ + 1, J𝟚𝟚 + 1

∣∣∣ 1)
−

L(1
2
, S∗2)

γ(J𝟚𝟛𝟝𝟞̄)γ(J𝟝𝟝)γ(J𝟚̄𝟛𝟝𝟞̄)
4F3

(
J ¯𝟙𝟝̄𝟞 +

1
2
, J𝟙𝟝̄𝟞 +

1
2
, J𝟛̄𝟜𝟝̄ +

1
2
, J𝟛̄𝟜̄𝟝̄ +

1
2

J𝟚̄𝟛̄𝟝̄𝟞 + 1, J𝟝̄𝟝̄ + 1, J𝟚𝟛̄𝟝̄𝟞 + 1

∣∣∣ 1)
−

L(1
2
, S∗3)

γ(J𝟚𝟛𝟝̄𝟞̄)γ(J𝟝̄𝟝̄)γ(J𝟚̄𝟛𝟝̄𝟞̄)
4F3

(
J ¯𝟙𝟝𝟞 +

1
2
, J𝟙𝟝𝟞 +

1
2
, J𝟛̄𝟜𝟝 +

1
2
, J𝟛̄𝟜̄𝟝 +

1
2

J𝟚̄𝟛̄𝟝𝟞 + 1, J𝟝𝟝 + 1, J𝟚𝟛̄𝟝𝟞 + 1

∣∣∣ 1)
−

L(1
2
, S∗4)

γ(J𝟚𝟚)γ(J𝟚𝟛̄𝟝̄𝟞)γ(J𝟚𝟛̄𝟝𝟞)
4F3

(
J ¯𝟙𝟚̄𝟛 +

1
2
, J𝟙𝟚̄𝟛 +

1
2
, J𝟚̄𝟜𝟞̄ +

1
2
, J𝟚̄𝟜̄𝟞̄ +

1
2

J𝟚̄𝟚̄ + 1, J𝟚̄𝟛𝟝𝟞̄ + 1, J𝟚̄𝟛𝟝̄𝟞̄ + 1

∣∣∣ 1) ,
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where S∗i is obtained from (14.5.2) by inverting the i-th row. Note also that the first row

of parameters in each 4F3 corresponds precisely to the respective row in (14.5.2) up to a

universal inversion and half twist.

Similarly, plugging in (14.4.7), we also have

{Π}

√
L
(1
2
, S
)
= +

L(1
2
, S∗1 ′)

γ(J𝟙𝟙)γ(J𝟙𝟛̄𝟜𝟞)γ(J𝟙𝟛̄𝟜̄𝟞)
4F3

(
J ¯𝟙𝟚𝟛 +

1
2
, J ¯𝟙𝟝̄𝟞 +

1
2
, J ¯𝟙𝟝𝟞 +

1
2
, J ¯𝟙𝟚̄𝟛 +

1
2

J ¯𝟙 ¯𝟙 + 1, J ¯𝟙𝟛𝟜̄𝟞̄ + 1, J ¯𝟙𝟛𝟜𝟞̄ + 1

∣∣∣ 1)
+

L(1
2
, S∗2 ′)

γ(J ¯𝟙 ¯𝟙γ(J ¯𝟙𝟛̄𝟜𝟞)γ(J ¯𝟙𝟛̄𝟜̄𝟞)
4F3

(
J𝟙𝟚𝟛 +

1
2
, J𝟙𝟝̄𝟞 +

1
2
, J𝟙𝟝𝟞 +

1
2
, J𝟙𝟚̄𝟛 +

1
2

J𝟙𝟙 + 1, J𝟙𝟛𝟜̄𝟞̄ + 1, J𝟙𝟛𝟜𝟞̄ + 1

∣∣∣ 1)
+

L(1
2
, S∗3 ′)

γ(J ¯𝟙𝟛𝟜̄𝟞)γ(J𝟙𝟛𝟜̄𝟞)γ(J𝟜̄𝟜̄)
4F3

(
J𝟚𝟜𝟞̄ +

1
2
, J𝟛̄𝟜𝟝̄ +

1
2
, J𝟛̄𝟜𝟝 +

1
2
, J𝟚̄𝟜𝟞̄ +

1
2

J𝟙𝟛̄𝟜𝟞̄ + 1, J ¯𝟙𝟛̄𝟜𝟞̄ + 1, J𝟜𝟜 + 1

∣∣∣ 1)
+

L(1
2
, S∗4 ′)

γ(J ¯𝟙𝟛𝟜𝟞)γ(J𝟙𝟛𝟜𝟞)γ(J𝟜𝟜)
4F3

(
J𝟚𝟜̄𝟞̄ +

1
2
, J𝟛̄𝟜̄𝟝̄ +

1
2
, J𝟛̄𝟜̄𝟝 +

1
2
, J𝟚̄𝟜̄𝟞̄ +

1
2

J𝟙𝟛̄𝟜̄𝟞̄ + 1, J ¯𝟙𝟛̄𝟜̄𝟞̄ + 1, J𝟜̄𝟜̄ + 1

∣∣∣ 1) ,
where S∗i ′ is obtained from (14.5.2) by inverting the i-th column, and the first row of

parameters in each 4F3 corresponds to the respective column in (14.5.2) up to a universal

inversion and half twist.

15. Some proof sketches for § 9

In this section, we provide sketches of proofs of some statements in § 9. We are confident

that they turn into real proofs once proper technical care is given, but nevertheless we

have not done it. Also, we do in fact wonder if any human being will read this.

15.1. A sketch of the proof of Proposition 9.1.1. The following proof is rigorous — but

can also be written more easily, as in the traditional theory of the tetrahedral symbol —

when R compact. However, we have chosen to write the proof in a way should be valid in

the general case. We say “should be” because there are details we have not tried to fill in:

we expect them to be routine but rather tedious and notationally cumbersome to handle.

Let us pre-emptively confess to these sins:

• We shall not distinguish between the space of smooth vectors in anR-representation

and its Hilbert completion; similarly we will not clearly distinguish between maps

that are defined on the smooth part and on the Hilbert completion.

• We will be freely using the theory of unitary decomposition. In particular, this

theory handles various set- and measure-theoretic issues that we will not even

allude to.

As a typical example, let f(π) be a rule that assigns to each class [π] in the unitary

dual of R an element of “the” corresponding unitary representation π. In this

situation is a reasonable way to talk about such fs, and there is a reasonable way

to talk about them being measurable, and taking the inner products of two such;

but all this we will omit.

• Many of the functions below are defined in the sense of measure theory, i.e., off

zero measure sets; again, we will ignore this entirely in our language.
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• We shall not justify absolute convergence of expressions below. This is the only sin

that we think is not venial, because it requires estimates that we did not carry out.

Suppose π, σ are tempered representations, upon which we fix self-duality pairings.

For any tempered representation τ ∈ P0, on which we we also fix a self-duality pairing,

we may normalize an invariant functional Λ on π⊗ σ⊗ τ according to (3.4.3). We dualize

it to obtain a map π⊗ σ→ τ. (The first sin!)

Recall (Lemma 3.4.2) that there are real structures πℝ, σℝ, τℝ on which the duality

structures are inner products. We then define an inner product on π, σ, τ by complex-

linear extension.

Lemma 15.1.1. The induced map

π⊗ σ −→
∫
τdτ

extends to an isometry of Hilbert spaces upon completing the left-hand side. On the right, the
measure is Plancherel measure; and we integrate over the subset of P0 with the property that there
is a nontrivial invariant functional on π⊗ σ⊗ τ.

Proof. We prove the corresponding statement for real Hilbert spaces, from which the claim

follows by complex-linear extension. This amounts to the following assertion for v, v ′ ∈ πℝ
and w,w ′ ∈ σℝ:

(v, v ′)(w,w ′) =

∫
dτ

∫
h∈R

∑
e∈Bτ

⟨hv, v ′⟩⟨hw,w ′⟩⟨he, e⟩dh.

whereBτ is an orthonormal basis for τℝ, which is a consequence of the Plancherel formula

(9.1.1) applied to the function h 7→ (hv, v ′)(hw,w ′). ∎

We now put ourselves in the situation of § 9.1; having fixed self-duality pairings on all

the πij we fix inner products as above. In what follows, π12, π23, π34 should be regarded as
fixed, but the remaining πs will be “varying” — that is, we will not explicitly include in

the notation dependence on π12, π23, π34.

Applying the lemma (to various choices of π, σ), we find isometries:

π12 ⊗ π23 ≃
∫
π24

π24 =⇒ π12 ⊗ π23 ⊗ π34 ≃
∫
π24

π24 ⊗ π34 ≃
∫
π14,π24

π14. (15.1.1)

Here,≃means an isometry of Hilbert spaces. The range of integration on the right hand

side consists of those π14, π24 for which the representation both π21 ⊗ π23 and π14 ⊗ π34

admit nonzero invariant maps to π24. For a given π14 let us call this set of π24 by the name

A(π14) (it depends on the other πs too, but we are regarding them as fixed).

We get a similar decomposition with 24 replaced by 13:

π23 ⊗ π34 ≃
∫
π13

π13 =⇒ π12 ⊗ π23 ⊗ π34 ≃
∫
π12

π12 ⊗ π13 ≃
∫
π14,π13

π14. (15.1.2)

where the range of integration consists of pairsπ14, π13 with the property that bothπ23⊗π34

and π14 ⊗ π12 admit maps to π13. For a given π14 let us call this set of π13 by the name

B(π14) (it depends on the other πs too, but we are regarding them as fixed).
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Therefore, there is an isometry∫
π14,π24

π14 ≃
∫
π14,π13

π14, (15.1.3)

where the ranges of integration are as specified above. Being equivariant for the group

action this map necessarily has a rather special form: for eachπ14 we must have an isometry

L2(A(π14)) ≃ L2(B(π14)),

which is necessarily given by a scalar-valued kernel function Kπ14(π24, π13) on the product

A(π14)× B(π14); explicitly, the isometry of (15.1.3) necessarily has the form

f(π24, π14) 7−→
∫
π24

Kπ14(π24, π13)f(π24, π14), (15.1.4)

where the function f is vector-valued: it takes inputs π14 and π24 and returns a vector in

the space of π14; on the right, the input parameters are π14 and π13 with the output a vector

in π14.

In what follows, we write for typical vectors

x ∈ π12, y ∈ π23, z ∈ π34, w ∈ π41.

We will denote the image of x⊗y⊗z on the right hand side of (15.1.1) by Eπ14
π24

(x⊗y⊗z);
it is an element of π14 that depends also on the choice of π24. Similarly we denote its image

on the right hand side of (15.1.2) by Eπ14
π13

(x⊗ y⊗ z). Thus the Es are linear maps

Eπ14
π24
, Eπ14
π13

: π12 ⊗ π23 ⊗ π34 −→ π14

Let x, y, z vary through orthonormal bases of K-finite vectors for the respective represen-

tations. Then x⊗y⊗ z varies through an orthonormal basis for π12⊗π23⊗π34. Therefore,

Eπ14
π13

(x ⊗ y ⊗ z) and Eπ14
π24

(x ⊗ y ⊗ z), considered as π14-valued functions of (π14, π13) or

(π14, π24), form orthonormal bases for the two Hilbert spaces appearing on correspond-

ing sides of (15.1.3). The unitary transformation sending one basis to the other sends a

function f(π24, π14), taking values in π14, to

f ′ : (π13, π14) 7−→
∑
x,y,z

Eπ14
π13

(x⊗ y⊗ z)
∫
π24,π

′
14

⟨f(π24, π
′
14), E

π ′
14
π24(x⊗ y⊗ z)⟩.

Let f(π24, π14), f
′(π13, π14) be arbitrary, but “real-valued,” i.e. valued in a fixed real form

π14,ℝ; this permits us to ignore complex conjugates in inner products. Compare the above

equation with (15.1.4) to conclude∫
π14,π24

Kπ14(π24, π13)⟨f(π24, π14), f
′(π13, π14)⟩

=

∫
π24,π14,π

′
14

∑
x,y,z

⟨f(π24, π
′
14)⊗ f ′(π13, π14), E

π ′
14
π24(x⊗ y⊗ z)⊗ Eπ14

π13
(x⊗ y⊗ z)⟩.

Since f is arbitrary, the same equality still holds without integrating over π24; so
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π14

Kπ14(π24, π13)⟨f(π24, π14), f
′(π13, π14)⟩

=

∫
π14,π

′
14

∑
x,y,z

⟨f(π24, π
′
14)⊗ f ′(π13, π14), E

π ′
14
π24(x⊗ y⊗ z)⊗ Eπ14

π13
(x⊗ y⊗ z)⟩. (15.1.5)

Previously we fixed π12, π23, π34. We now additionally fix π13 and π24, so that we are now

regarding all the πij for {ij} ̸= {14} as fixed, and will not include in the notation dependence

on these representations. Having fixed these, we put

Kπ14 := Kπ14(π24, π13).

Again, here, we have a measure-theoretic issue, since K is defined only off a set of measure

zero; in actuality, all the statements hold almost everywhere, and are to be extended by

continuity.

Abridge π14 to π and π ′
14 to π ′

, switch the letters f, f ′ for nicer typography, and rewrite

(15.1.5) as:

Kπ ·
∫
π

⟨f(π), f ′(π)⟩ =
∫
π,π ′

∑
x,y,z

⟨f ′(π ′)⊗ f(π), Eπ ′

π24
(x⊗ y⊗ z)⊗ Eππ13

(x⊗ y⊗ z)⟩. (15.1.6)

Let us reinterpret the right hand side as follows. Consider the representation

Π∗
G = (π ′ ⊗ π)⊗

⊗
ij∈E−{14}

πij ⊗ πij

i.e., similar to ΠG but now taking π14 = π, π41 = π ′
, that is, two previously isomorphic

copies of π14 are taken to be distinct representations. We can define as before ΛH∗
in the

dual of Π∗
G by tensoring the invariant trilinear functionals on triples of representations

indexed by edges sharing a common vertex. Note that both Π∗
G and ΛH∗

depend on both

π and π ′
, but to simplify the notation we will not explicitly denote this.

Let Π∗
G,big

be the same expression integrated over π, π ′
, and define Λ̃H in the dual of

Π∗
G,big

by similarly integrating ΛH∗
, where, in both cases, all integrals are taken with

respect to Plancherel measure in both π and π ′
:

Π∗
G,big

=

∫
π,π ′

Π∗
G, Λ̃H =

∫
π,π ′

ΛH∗.

Consider the expression

∑
x x ⊗ x ∈ π12 ⊗ π12 and its analogues for π23 and so on; let

∆ be obtained by tensoring together all these expressions for all ij ∈ E − {14}. Finally, let

Y :=
∫
f ′ ⊗

∫
f ∈

∫
π,π ′ π

′ ⊗ π. Then we may rewrite (15.1.6) as a pairing inside Π∗
G,big

:

⟨Y ⊗ ∆, Λ̃H⟩Π∗
G,big

. (15.1.7)

To proceed we must observe an alternative way of writing the tetrahedral symbol.

Lemma 15.1.2. Notation as above, we have

(Y ⊗ ∆, Λ̃H) =
∫
π

⟨f(π), f ′(π)⟩{Π} (15.1.8)

where {Π} takes as arguments the fixed πij for ij ̸= 14, and π14 = π.
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Given this, it is easy to finish the proof: Starting at (15.1.6) we find∫
π

Kπ⟨f(π), f ′(π)⟩ = (15.1.7) =

∫
π

{Π}⟨f(π), f ′(π)⟩,

and, this being valid for all choices of f, f ′, we see that {Π} coincides with Kπ, which is the

kernel of an isometric isomorphism of L2(A(π)) and L2(B(π)), as desired.

Proof of Lemma 15.1.2. First let us prove an easier-to-grasp version. Suppose that we can

find a functional λD on ΠG such that∫
δ∈D∩H

δ · λD = ΛD, (15.1.9)

where we can think of λD as an un-averaging of ΛD. Then we have, simply,

{Π} = (ΛH, λD), (15.1.10)

where the left hand side means limiΛ
H(vi) when λD = limi(vi,−). To prove (15.1.10) we

choose vH ∈ ΠG with the property that ΛH(vH) = 1 and successively rewrite {Π} via

(ΛH) ′(vH) =

∫
h∈D∩H\H

ΛD(hvH) =

∫
h∈H

λD(hvH)

=

∫
H

lim

i
(vi, hvH) = lim

i

∫
H

(vi, hvH) = lim

i
ΛH(vi).

Write u(π) = ⟨f(π), f ′(π)⟩, so that the desired (15.1.8) can be written as

∫
π
u(π){Π} =

(Λ̃H, Y ⊗ ∆). Note that this is a version of (15.1.10) with ΠG replaced by Π∗
G,big

and with

Y ⊗ ∆ playing the role of λD, and we use similar reasoning to prove it. Note, first of all,

the following analogue of (15.1.9):∫
δ∈D∩H

δ · (Y ⊗ ∆) =
∫
π

u(π)ΛD. (15.1.11)

This is a consequence of the Plancherel formula, which gives the analogue of the “Schur

orthogonality relations” in the current context. The point is that the averaged vector∫
h∈R

h · Y represents, on

∫
π,π ′ π⊗ π ′

, the functional that corresponds to restricting to the

diagonal, contracting, and integrating against ⟨f, f ′⟩ times the Plancherel measure. Now,

to prove (15.1.8) we “do the same thing in a family,” proceeding as before but replacing vH
now by a (π, π ′)-dependent family of vectors vH(π, π

′) ∈ Π∗
G, chosen to have the property

that ΛH(vH) = 1 for all π, π ′
; write vH for the integrated vector

∫
vH(π, π

′) ∈ Π∗
G,big

. The

result is∫
h∈H

(Y ⊗ ∆,hvH)Π∗
G,big

(15.1.11)

=

∫
D∩H\H

∫
π

u(π)(ΛD, hvH(π, π)) =

∫
π

u(π){Π}.

This finishes the proof. ∎
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15.2. Relationship between geometric representation theory and Theorem 5.2.1, a sketch.
We follow notation as in § 9.7, and will write f = 𝔽q((t)) ⊃ o = 𝔽q[[t]] for the analogues

of F,O over 𝔽q. We write for this argument

α = (1− q−2) = L(2)−1.

Let us consider, as in (8.1.1), integration over (H ∩ D)\H as defining an averaging

intertwiner Av from X = D\G to Y = H\G. We will use the normalized version

I
aut

= α3Av,

which comes from the fact that it is geometrically natural to use the “point-counting”

measure where PGL2(o) has mass 1 − 1/q2, coming from the point count over 𝔽q. We

regard I
aut

an interwiner from functions on Yf/Go to Xf/Go. We will give these spaces

Xf/Go and Yf/Go also the point-counting measures; for example the measure of Xo/Go is

then equal to α−6
, whereas the measure of Xo/Go is equal to α−4

.

Let Ď0 be a maximal compact subgroup of the dual group of Ď, which we regard as

embedded in Ǧ in the diagonal fashion. For any σ ∈ Ď0 let φYσ be the corresponding

normalized spherical function on Yf/Go, whose value at the identity equals 1; and let

φXσ be the normalized spherical function on Xf/Go; its value at the identity coset equals,

instead, α−8

√
L( 12 ,S)

L(1,ǧ)
, see (6.2.1). By definition,

I
aut
φYσ = α3{Π}φXσ ,

where Π = Π(σ) is the unramified representation with parameter σ. By the Plancherel

formula, we get

1Yo =

∫
σ∈Ď0

⟨1Yo , φYσ⟩Yf/Go
φYσ · α12L(1, ǧ)

1
2 (15.2.1)

and applying I
aut

and pairing we find

⟨1Xo
, I

aut
1Yo⟩ =

∫
Ď0

α3{Π} ⟨1Yo , φYσ⟩Yf/Go
⟨1Xo

, ϕXσ⟩Xf/Go︸ ︷︷ ︸
α−10φXσ(1)

α12
√
L(1, ǧ)

= α−3

∫
Ď0

{Π}

√
L
(1
2
, S
)
.

where the exponent −3 arises from 3−10−8+12. There is a similar formula with a Hecke

operator inserted.
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Let us compare this with what we get from the conjecture enunciated around (9.7.1).

Computing Hom-spaces
19

and then passing to Frobenius trace, we find

⟨1Xo
, I

aut
1Yo⟩ = Tr(q− 1

2σ, k[P]Ď) =

∫
σ∈Ď0

character of q− 1
2σ on k[P]. (15.2.2)

Here Ď0 is a maximal compact subgroup of Ď, and the q− 1
2 arises from interpretation the

effect of shearing. Again, there is a corresponding formula with a Hecke operator inserted.

Comparing (15.2.1) and (15.2.2), and moreover the versions with Hecke modifications, one

can identify the integrands, and not merely the integrals; so we find

{Π} ·
√
L
(1
2
, S
)
= α3 · character of k[P] at q− 1

2σ

which agrees with Theorem 5.2.1.
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