THE TETRAHEDRAL (OR 6j) SYMBOL
AKSHAY VENKATESH AND X. GRIFFIN WANG

AsstracT. We will attach a scalar invariant to a tetrahedron whose edges are labelled by
irreducible representations of a ternary orthogonal group SO3 over a local field. This
generalizes the 6j symbol whose theory was developed by Racah, Wigner, and Regge.

We give several formulas for this invariant, including in terms of hypergeometric-type
integrals and functions, and show that it admits a symmetry by the the 23040-element Weyl
group of Spin,;,. We then interpret these results in terms of relative Langlands duality,
where the dual story comes from the action of Spin,, on a 16-dimensional cone of spinors.
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Ficure 1. A tetrahedron with labeled edges

1. INTRODUCTION

The 6j symbol {;1 ;,2 ;,3 } is an invariant attached to a tetrahedron T with integral side
4 )5 Je

lengths j;, where the upper and lower rows index opposite edges (as in[Figure ). In truth,
each j is indexing the irreducible (2j + 1)-dimensional representation V; of the Euclidean
rotation group SOgﬂ The origin of the 6j symbol lies in the work of Racah and Wigner on
addition theorems for (quantum) angular momentum. The theory was further developed
by Regge, who discovered the extraordinary “Regge symmetries” [Reg59] of 6j symbols,
and from these deduced new geometric symmetries of tetrahedra [PR69,Rob99]. Since
then, the 6j symbol has resurfaced in special function theory, topology and number theory
(see§ 9| for some references). We will review the classical definition, and then proceed to
discuss in more detail what we do in this paper.

1.1. The classical definition.

... I hardly ever take up Dr. Frankland’s exceedingly valuable “Notes for Chemical
Students,” which are drawn up exclusively on the basis of Kekulé’s exquisite con-
ception of valence, without deriving suggestions for new researches in the theory of
algebraical forms. — James Joseph Sylvester, “Chemistry and Algebra.”

These words of Sylvester relate to a graphical calculus for invariant theory. The defini-
tion of the 6] symbol is animated by the same spirit; were some strange beast, whose only
language was the invariant theory of binary forms, to be confronted with the idea of a
tetrahedron, we think it would surely rediscover the definition that follows.

We canrealize the irreducible representation Vj of SO3 of dimension 2j+1by considering
the space of homogeneous polynomials of degree j in three variables x, y, z, and restricting

UIn fact, the 6j symbol is defined for half-integral j, which correspond to representations of the double
cover SU; of SO3. For the purposes of this paper, however, restricting to integral j gives a simpler presentation
of the theory. This is inessential; see|§ 9.4/and |§ 9.5.3|for further discussion.
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them to the sphere x* + y2 4+ z> = 1. In what follows, it is more convenient to consider
only real polynomials. By integrating over the sphere we get a rotation-invariant inner
product on V;.

Now, a classical theorem of invariant theory asserts that the triple product

Vqa® Vp ® V,

admits a nonzero SO3-invariant vector if and only if a, b and c satisfy the triangle inequal-
ity, i.e. form the sides of a Euclidean triangle. When this happens, the invariant vector
is unique up to scaling, and can be explicitly described, with reference to the model just
discussed, as the dual of the functional

(Vi,v2,Vv3) — LZV1V2V3-

If a triangle with integer side lengths, then, indexes an invariant vector, what can
we extract from a tetrahedron 7T of integer sides? When j,j’,j” correspond to the side
lengths of a face of T, we can distinguish an invariant vector inside V; ® V;» ® V;», which
we normalize to have length 1; by working inside the real form, this distinguishes the
invariant vector up to sign. Tensoring these vectors together for all four faces, we arrive at
a vector inside

V;, @ Vj, @V, ®Vj, ®@...Vj, @V,

and contract, using the inner product on each V.. We arrive at a real-valued invariant;
this is, up to sign, the classical 6j symbol.

1.2. What we do in this paper, and why. Our goal is to set up and study the definitions
above in a broader context.

1.2.1. What? First of all, we will allow SO3 to mean the automorphisms of any nondegen-
erate ternary quadratic form; thus, for example, we allow also x? +y? —z?, which results in
anoncompact group SO ; (IR)H The result of this substitution is that the j-parameters now
can vary continuously; informally, the input may be either a Euclidean or a Lorentzian
tetrahedron.

Secondly, and perhaps more disorienting to the reader familiar with the classical defi-
nition, we will allow the real numbers to be replaced by any local field F, for example, the
complex numbers or the p-adic numbers. Informally speaking, this further enlarges the
domain of permissible j-parameters.

We propose to rename the symbol, in this context at least, the “tetrahedral symbol,”
which seems more evocative than the traditional name, and, at least, does no further
injustice to the pioneers.

’This group may be more familiar in its isomorphic realization the group PGL;(R) of projective linear
transformations of the plane.
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1.2.2. Why? It seems to us that, in this more general context, the theory both becomes
richer in its own right, and also acquires interesting new connections to other areas of
mathematics. Thus, for example:

(a) As alluded to above, the 6j symbol possesses an unexpectedly large symmetry
group —by a group of order 144, isomorphic to 4 x &3 (Where &,, is the symmetric
group of degree n). In the general context, the tetrahedral symbol will acquire
symmetry under a much larger group of order 23040, which is isomorphic to the
the Weyl group of Spin, .

(b) The tetrahedral symbol in the general context possesses a variety of novel and
beautiful integral representations, some of which seem to us much simpler than
any integral representation for the original 6j symbol.

(c) When F is a local field, and the representations in question are unramified, it be-
comes possible to evaluate explicitly the tetrahedral symbol in terms of the geometry
of a certain remarkable spinor cone on which the group Spin,, acts. In this way,
we see the spin group itself, rather than only the Weyl group that was manifested
in (a).

(d) The setting in which we develop the theory — namely, the representation of real
and p-adic groups — is also the setting of the theory of automorphic forms and
the Langlands program. As we will see, the tetrahedral symbol has already played
an interesting unacknowledged role in the former theory — as the kernel under-
lying certain “spectral reciprocity” formulae; and we will offer various proposals
concerning its broader role in the Langlands program.

1.2.3. Connection to existing work. The idea of generalizing the 6j symbol to the cases of
F =RorF = Cisnotanew one. Indeed, the analogues of 6j symbols have been studied for
the groups SL,(R) and SL,(C) by several authors, both in the context of special function
theory, and of mathematical physics. Among other things, these works define versions of
the 6j symbols and give a number of formulas of hypergeometric type, closely related to
our|[§ 7]in the case F = R or C.

We discuss these papers in a little more detail in Broadly speaking, the main
point of overlap is point (b) from However, our approach to the theory also has
a somewhat different emphasis, in that we have sought to give a presentation separating
abstract aspects from computational aspects. Thus our definition of the symbol is some-
what different to prior work; it uses no explicit formulas and is manifestly invariant by
tetrahedral symmetries. This simplicity comes at a price — more effort is needed to get to
explicit formulas.

1.3. A summary of the paper. To try to bring out the beauty of the subject matter, we have
to some extent separated statements from proofs; in the first part of the paper, the reader
will find statements of the theorems, but some proofs are only sketched, with details given
in the second part. We summarize briefly the contents of this first part.

e In |§ 3| we give a more precise version of the discussion above, and explain how
to extend it to the case of general SO;. In this general context, the Vis become
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infinite-dimensional; nonetheless, there is a simple rearrangement of the definition
that avoids analytic difficulty.

e In[§ 4we set up various notation that connect tetrahedral geometry to the geometry
of the root system D¢ and the associated group Spin,,.

e In[§ 5we formulate the main theorems:

— [Theorem 5.1.1| proves that the tetrahedral symbol, for principal series, enjoys
a W(Dg)-symmetry;

— [Theorem 5.2.1 evaluates the tetrahedral symbol, in the unramified case, in
terms of the geometry of a spinor cone.

o In we give several formulas of geometric nature for the tetrahedral symbol,
in particular [Proposition 6.1.1]as an integral of characters, [Proposition 6.2.1{as an
integral of spherical functions, and [Proposition 6.3.1| as an integral over moduli
of six points on P'. We regard these formulas as having intrinsic interest, besides
their usage to prove the theorems of|§ 5; the same comment goes for the next section
too.

e In|§ 7| we give hypergeometric formulas for the tetrahedral symbol, in particular
Theorem 7.2.1l In the case F = R we will express the result as a sum of 4F;
hypergeometric series evaluated at 1.

e In (§ 8 we explain how the study of the tetrahedral symbol, and in particular our
theorem computing it in terms of a spinor cone, fits into the story of relative
Langlands duality.

o In we rather briefly discuss a number of interesting topics: the unitary inte-
gral transform defined by the tetrahedral symbol and its role in number theory;
difference equations; and corresponding questions in geometrical representation
theory.

1.4. Acknowledgements. The first-named author (A.V.) would like to thank Andre Reznikov,
for two decades of inspiration and friendship, which included many conversations around
the present subject matter; in particular, it was Reznikov’s encouragement that led us to
really look carefully at the definition of the 6j symbol.

The second-named author (X.G.W.) would like to thank Minh-Tam Trinh for many
spontaneous discussions; and his relentless pursuit of creativity in math has always been
inspirational throughout the years.

Both of us thank Danii Rudenko for interesting discussions during his visit to IAS. We
would also like to thank Tulio Regge for inspiration.

2. REVIEW OF HARMONIC ANALYSIS ON A LOCAL FIELD

The reader should skip this section and refer to it as needed.
Recall that a local field is a field that is equipped with a multiplicative absolute value
| -], where we require || to satisfy the triangle inequality and induce a locally compact
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topologyﬂ Such a field is isomorphic to either the real numbers, the complex numbers, a
finite extension of the p-adic numbers, or a finite extension of the field of Laurent series
over a finite field.

To facilitate the discussions throughout the paper, it is necessary to introduce some
common notations from harmonic analysis of groups defined over a local field. We
mainly focus on the case where the group is the multiplicative group Gy,.

2.1. Characters, Haar measures, and absolute values. Let F be a local field, and if F
is nonarchimedean we let O be its valuation ring with uniformizer @ and residue field
k = F4. We fix, once and for all, a nontrivial additive character

Y=Yp: F— CX,

as well as an additive Haar measure du on F, such that the Fourier transform F on F with
respect to ¥ and dp is involutive: in other words, (F%f)(x) = f(—x). In this paper, we will
make the following choices for du:

(1) when F is nonarchimedean, O has measure 1;
(2) when F = R, the unit interval [0, 1] has measure 1;
(3) when F = C, the unit square [0, 1] x [0, i] has measure 1.
We also normalize the absolute value | - | on F to be the factor by which dilation scales the

additive Haar measure, or more explicitly:

(1) when F is nonarchimedean, |®| = q”;

(2) when F =R, [x| = sgn(x)x;
(3) when F =C, |z] = zZ.
Then du/| - | is a multiplicative Haar measure on F*.
Accordingly, the character ¥ is as follows:

(1) when Fis Q,, the choice of uniformizer @ induces a group isomorphism F/O = p,
(the p-power roots of unity in C*), and we let ¥(x) = x mod O;

(2) when F is a finite extension of Q,,, we have ¥(x) =Yg (Trr/q, (@~ %)), where the
O-module @40 is precisely the set of elements y such that Trr/q, (yO) C Z,;

(3) when F = F((@)), ¥ is the composition of projecting to the coefficient of ® ', and
an isomorphism Fq = pq C C*;

(4) when F = R, ¥(x) = e 27%;

(5) when F = C, W(z) = e ™i(z+2) = g 273 (2]

Following the conventions of number theory, we shall call a continuous homomorphism
F* — C* a quasi-character (instead of a character per conventions of group theory) of F*.
A unitary quasi-character (i.e., its image lands in the unit circle) is called a character of
F*. The choice of measure on F* induces also a measure on the group of characters of
F* endowed with its natural locally compact topology, in such a way that the Fourier
inversion formula holds.

We make the following notational definitions:

3As we recall below, the topology in fact determines a canonical absolute value; usually, one therefore
thinks of the topology as part of the datum of a local field, but not the absolute value.
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Definition 2.1.1. Given a quasi-character x: F* — C* of F* and s € C, we define its s-twist
to be the quasi-character

Xs = x| I°.
To avoid ambiguity, we adopt the convention that xI := (Xs)™ = (X™)ns for any integer

n. Namely, raising to a power always has lower priority than s-twisting. We also define the
shorthands X = x1, Xx- =X_1,X;' = (x+)' = (X "")-, X4+ = (X+)+, and so on.

2.2. v, L, and e-factors. Let x be a quasi-character of F*. There are three meromorphic
functions on C attached to x: the y-factor, the L-function (or L-factor), and the e-factor,
which will be used frequently throughout this paper. The most important of the three, for
us, will be the y-factor.

These will be denoted by (s, X), L(s,Xx) and €(s, x) respectively. They are all compatible
with twisting, in the sense that

Y(s+t,%x) =v(s,Xt) = V(0y Xs1t)s
L(S + t)X) - L(S>Xt) - L(O)Xert))
6(5 + t)X) - €(S)Xt) = e(O)XS—O—t)a

and we will denote their values at s = 0 by v(x), L(x), €(x), when defined, that is to say,
when s = 0 is not a pole of the meromorphic function. When x = |-[*, we also use the
shorthand y(s) :=v(|-[*), and similarly for L(s), and €(s).

2.2.1. The y-factor as the Fourier transform of a multiplicative character. The most important,
for us, will be the y-factor y(s, x) which tells us what the Fourier transform of a character
is. Its value y(x) = v(0,%) at s = 0 is characterized by the following equality:

Fix ) =vx)x-1- (2.2.1)

A priori, the left hand side is a distribution; the assertion is that, when y(s,x) does not
have a pole at s = 0, the left-hand side is represented by the function on the right-hand
side. Homogeneity arguments already imply that F(x~') and x_; are multiples of one
another, so the only question has to do with the scalar, and that is what vy tells us.

Remark 2.2.2. The y-factor is often characterized in number theory by means of the follow-
ing equality which is essentially a restatement of |(2.2.1)

y dx_ dx
=

J DO (el v(s,x)J O ()x (e X,
F |X F |X|

for ® a Schwartz-Bruhat function on F (this means a Schwartz function for F archimedean,
and a locally constant function of compact support otherwise), and @ := F(®).

2.2.3. Evaluation of the y-factor. It is not difficult to directly evaluate y(s). For example,
take the case F = R; one readily computes that, writing I = 27ti and I = —2mi,
1

_ (ys—1 Ts—1 .
(I*S+i*5)r(s)_(l + 71 —s). (2.2.2)

Y(s) =
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However, there is a more elegant way to rewrite this as a ratio of two I'-funtions that
reflects better the involutive property of Fourier transform, and also generalizes well to
local fields because I'-functions are just special cases of L-functions.

The L-function or L-factor attached to x is defined as:

;
1—x(®)q~s

1 if F is nonarchimedean and ¥ is ramified,
T () if F = R and x(x) = |x|'sgn(x)¢ where ¢ € {0, 1},
22m) -t (s+1) if F=Candx(z) = |z/*.

if F is nonarchimedean and ¥ is unramified,

L(s,x) =

Then one always has
L“ _ S>X71 )
L(s,x)

for unique a, b € C; we write €(s,x) = ab® for this a and b.
Said differently, e-factor is defined in terms of the L-factor and the y-factor by means of

L(s,X)
L“ - S,X_] ) )

In the nonarchimedean case, we have, for \p unramified,

Y(s,X) = x (ab®)

e(s,X) =v(s,X) (2.2.3)

e(s,x) =a-q =72

where a has absolute value 1. The reader can refer to [Tat79] for more details.

2.2.4. Other equalities for the y-factor. There are a variety of equivalent forms of |(2.2.1)|that
we record for reference. Replacing x by X, we have

Yis,x) =Fx; (1) = J X ()XW (x)dx. (2.2.4)
F
Applying Fourier transform again to (2.2.1) and using the involutive property, we have

X =T = (x(=)v(1,x)x1) " (2.2.5)

which can be written symmetrically as F(x_) = x(—1)v(5, x) " 'x:". If we apply F again
to (2.2.1) we find that

Y(0,x)v(1,x ") =x(-1), (2.2.6)

and so also y(%, x)v( %, x~ ') = x(—1), and moreover combining this with (2.2.4) we arrive
at

v(s)~"' = L!x!shl’(x)dx (2.2.7)
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2.2.5. Multisets of characters. Lastly, we use the following notational conventions for multi-
sets of characters X, Y: we let X! (resp. X;, X, X_, etc.) to be the multi-set consisting of
characters x ' (resp. xs, X+, X_, etc.) for x € X, and

XY ={xy|xeXyeYhL

Similar to the single character case, X; ' means (X;)~'. If X = {x} is a singleton, we also
use X ® Y:=X® Y. In addition, we let

V(S> X) = H Y(S)X))

XX

and similarly for the L-factor or the e-factor.
For general groups other than G,,, the definition of v, L, and e-factors are more com-
plicated and we only need them for a small portion of the paper. For this reason we will

postpone the discussion until

2.3. Adjointness and isometric properties of the Fourier transform. To avoid any sign
confusions we write these out. For @; Schwartz-Bruhat functions on F, we have (writing
simply ® for the Fourier transform of @)

J (D1d)z:J b, 0,,
F F

as it follows directly from the definition. If we replace above @, by its Fourier transform,
we arrive at

J}M@%FM=L®@L

Finally, replacing @, by ®,(—x), we get

| 0@~ 3.
F F

2.4. Review of integration on projective spaces. We will several times have occasions to
integrate densities over projective spaces, and we now set up relevant notations.

Let W be a k-dimensional vector space over F. We say a complex-valued function ¢ on
W — {0} is (—k)-homogeneous if ¢(tw) = [t| *@(w) for nonzero t € F*. There is, up to
scaling, a unique GL(W)-invariant functional on such functions, denoted by

@ r— J ®
PW
which we regard as “integration over PW”. It can be normalized by the following require-
ment, once we pick Haar measures on W and F*: for a Schwartz function ® on W itself,
the function ®(w) = [ £ [t ®@(tx) is (—k)-homogeneous, and we require

J@:JQ
PWwW w
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Now, fix coordinates W ~ F™, and suppose the Haar measures on both W and F* are
induced from a Haar meausre on F. Then one readily verifies

J @ :J @(1,X2,. .oy Xn)dxz - - dxp. (2.4.7)
pn—1 Fn—1

Part 1. Definitions and statements
3. DEFINITION OF THE TETRAHEDRAL SYMBOL

In this section, we define the tetrahedral symbol. The first two subsections, and
set up notational preliminaries about tetrahedra and SOj; respectively. In we
describe the datum defining the tetrahedral symbol, and the actual definition is given in

(under some mild simplifying conditions) and (in general).

3.1. Tetrahedra. Consider a tetrahedron, with the following labeling: we label the four
vertices by bold face numbers 1,2, 3,4, the six edges by unordered pairs of vertices, and
the twelve oriented edges by ordered pairs of distinct vertices; we denote these sets by
V, E, O respectively. For two vertices i,j € V, we will use ij to denote either the associated
oriented edge (from i to j) or the unoriented one and the context will make it clear which
version we are referring to. There are natural maps

O —E i—1ij
O—V, {j—1i
which, respectively, assign to an oriented edge the underlying unoriented edge or its

source vertex. For each i € V, we let O; C O be the oriented edges with source 1i, that is
the preimage of i under the second map above.

3.2. Group-theoretic setup. Let
R =S0;(F)

be the special orthogonal group of a nondegenerate ternary quadratic form over the local
tield F. Note that we allow an arbitrary form, not only a split one; therefore, in the case
of F = R, the group R is either compact SO3; or PGL,(R), and more generally R is either
PGL;(F) or the projective group of units in a quaternion algebra over F. Now define:

G=R° D=RE H=rR". (3.2.1)
Here we regard D, H as subgroups of G, by means of the maps O — Eand O — V. We
may visualize elements of G ~ R'? as 12-tuples of elements of R thus:
{912 913 914 923 9 9341
921 gzt 9u 92 9u a3’
and then D ~ R°® and H ~ R* correspond to subgroups:

D_abcdef _x x x yy z
labcdefl’ |Jyzwzwwl
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We fix a Haar measure on R and so also on G, D, H, etc as follows: if R is compact,
then we let its volume be 1; in the nonarchimedean split case we normalize the Haar
measure so that SO3(0) has volume 1. For the remaining case, when R = PGL,(R) or
PGL,(C), we first fix an algebraic volume form on PGL,, identifying it by means of the
map g — (g-0,9-1,g-c0) with (P')® minus diagonals; on this space, we consider the
unique algebraic volume form w whose restriction to (A')? minus diagonals is

W — dX] A\ dXz AN dX3 ' (322)
(x1 —x2)(x2 —x3) (x5 — x1)
One readily verifies that this this is R-invariant. Then |w| defines an volume form on the
F-points of R. Note that this construction works in the case of F nonarchimedean too, but
it gives a different measure: it would assign to the O-points the volume (1 — q—2).
Sometimes we will need to use both the Haar measure and for nonarchimedean F,
and so to emphasize their distinction, we will also use d” g to denote the measure induced

by (3.2.2). For convenience, we define
VP ﬁ _ {(1 —q %) R =PGL,(F), F nonarchimedean,

~dg |1 otherwise. (3.2.3)
3.3. The tetrahedral datum. We denote by IT an assignment of an irreducible smooth repre-
sentation of R to each unoriented edge of the tetmhedronﬂ The representation will, of course,
matter only up to isomorphism. To this we will attach an invariant {TT} which is a complex
number defined up to sign. The matter of fixing the sign is an interesting one, which we
return to at various points, in particular and part (2) of Theorem 5.1.1

Denoting the assignment IT by e — 7., we will also refer to 7;; for an oriented edge
ij € O by means of the natural map O — E, and taking the external tensor product of all
5 produces an irreducible representation of G, denoted simply by TTg.

Now, each 7, admits an invariant symmetric self-pairing

(—y—): e x MTe — C.

Such a pairing always exists ([JL70, Theorems 2.18, 5.11, 6.2]); making clever use of
multiplicity one subgroups, Dipendra Prasad proved that it is also always symmetric
([Pra99, Corollary 2, Proposition 2]). Moreover, any two such pairings are equivalent
under a rescaling of the underlying space of 7t.; and by Schur’s lemma, the automorphisms
of the pair (7., (—, —)) reduce to multiplication by +1 H We will frequently refer to such a
pairing as a rigidification, because it reduces the automorphism group of 7t from C* to £1.

Fix such a self-pairing for each 7., which then induces a pairing between 7t;; and 7;3;
these induce a D-invariant linear contraction map

<—>Z HG — C,

4The word “smooth”, in the nonarchimedean case, means that each vector has open stabilizer. In the
archimedean case, it connotes that the underlying vector space for R has a Fréchet topology such that the
map g — g - v is smooth. Subtle issues of topology, however, will be almost irrelevant for us.

"While this seems ad hoc, this is a special case of a construction that works for any split reductive group,
see discussion of duality in [BZSV24].
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which, concretely, is given by

®Vij c ﬂG — H(Vi]‘>"ji)-

ijeo i<j

We will also denote this by AP to emphasize its D-invariance.
3.4. Definition of the tetrahedral symbol when I1; is tempered.

3.4.1. Definition in the compact case. We begin with the definition of the tetrahedral symbol
in “the compact case”, that is to say, when R is compact (cf. [§ 1.I). In this case all the
representations 71j; are finite dimensional. We put mp, = Xjjc0,7, a representation of
RO ~ R3. For example,

Mo, = Tz X 7143 X 7144.

Then g = WicyTo,, and the pairings on each 7. induce also a self-pairing on each 7, .
It will be very convenient to make use of the following:

Lemma 3.4.2. There exists a real structure s on which (—, —) defines a real inner product.

Proof. This is well-known, but we write out the argument for later reference. Fix a unitary
inner product on 7., which we denote by (x,y). Necessarily (x,y) = (x, Cy) for some
complex-antilinear C : m, — 7, which commutes with the group action, and one readily
sees that C? = +1. Symmetry of the pairing implies that (x, Cy) = (y, Cx); taking x = Cy
we deduce that C? is positive, thus must be +1. Then the fixed points of C gives the
desired real structure, since x = % + 1% [ |

We suppose that each mp, admits a nonzero R-invariant vector v;; otherwise we will
define {IT} = Oﬂ Then the self-pairing (vi,vi) is nonzero, because the self-pairing is
positive definite on a real structure for mp, and a suitable multiple of v; is real for this
structure. We therefore normalize v; so that (vi,v;) = 1 and let

V=v1®Vv, V3 ®Vy Gng, (341)

which, having fixed pairings, is uniquely specified up to a sign. Contract V to obtain what
we shall call the tetrahedral symbol

(T} = (V) e C. (3.4.2)

This depends on our choice of pairings only up to an overall =+ sign.
In the classical case when R is the compact real SO3 and each 713 is indexed by its highest
weight, this is up to sign the standard definition of the classical 6j symbol; this will follow

from our computations in

%It would be more proper to regard the symbol as undefined in those cases. We adopt this convention,
however, in order to avoid having to repeatedly say “or {IT} is undefined” in various statements; the same
convention is followed in the theory of 6j symbols.
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3.4.3. Definition in the tempered case. We now drop the assumption that R is compact, but
assume that each 7. is tempered. Recall that an irreducible representation of a group over a
local field is called tempered if it is “weakly contained” in the regular representation L?(R);
for details on what this means, see [HCHS88]. As we discuss further in tempered
reprsentations can be considered, roughly speaking, as a “real form” of a complex variety
parameterizing all representations. In the compact case, all irreducible representations
are tempered.

Every tempered representation admits a G-invariant inner product; in particular, by
inspecting the proof, we see that Lemma continues to apply: there exists a real
structure 7% and a R-invariant inner product upon it.

In place of D and H-invariant vectors in TTg, we will use D and H-invariant functionals.
The space of D-invariant functionals is always exactly one-dimensional, spanned by AP
defined as before; the space of H-invariant functionals is zero or one (see [Pra90]). Al-
though unnecessary for our immediate purposes, the two possibilities are distinguished
by the signs of various e-factors, as explained in the just-quoted work.

If a nonzero H-invariant functional exists, there are two natural ways to construct it.
First of all, we can normalize one, up to sign, by the following rule:

AH(V1 )/\H(VZ) :J (h\)1,\)2)dh, vi,v2 € Ilg. (3.4.3)
H

Note the pairing that is used here, and indeed everywhere unless explicitly stated otherwise, is the
self-duality pairing, not an inner product.

The integral is absolutely convergent on account of the assumption that T is tempered.
In this case, A™ is nonzero if and only if the space of H-invariant functionals is nonzero,
as is proven in a more general context in [SV17]. On the other hand, we can start with AP
and just average it to be H-invariant:

(A™) v — J AP (hv)dh. (3.4.4)
HAD\H

This is also absolutely convergent under the assumption of temperedness: see(§ 10.3, By
the multiplicity-one property, A" and (A")’ are proportional to one another; we define
the tetrahedral symbol {IT} to be the proportionality factor:

(AT ={TAH,

This agrees with the definition given in the compact case. Indeed, define V as in (3.4.1);
it is straightforward to show that A" = (V,—) satisfies (3.4.3). Thus, on the one hand,
AH(V) = 1 by definition, and on the other hand, (A")’(V) = (V), which coincides with
(3.4.2).

Warning 3.4.4. The definition just given is dual to the definition given in Relative to
that discussion, we have swapped the role of vertices versus faces; or to put it differently,
by swapping the upper row with the lower row in the classical 6j notation.

3.5. Definition of the tetrahedral symbol in the general case.
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3.5.1. Principal series and the classification of tempered representations. We can extend the
definition beyond tempered representations by a process of analytic continuation. This
discussion is only relevant in the case when R is noncompact, which we shall therefore
assume.

We must first recall the notion of principal series representation and the classification
of tempered representations. Principal series are a twisted version of functions on the
projecive line P{. Namely, let x be a quasi-character of F*, and consider the space 7,
of functions on F? — {0} that are homogeneous of degree (x?)_1 = x> = (x_)?, thatis, a
function on F? — {0} satisfying

f(A-2) =x* (N f(2).
Then R, identified with PGL,(F), acts on such functions by means of

g-f:zr— f(zg)x"'(detg) = f(zg)(x ')y (detg),
where § € GL,(F) is an arbitrary lift of g, the choice of which has no effect on the action.
This construction yields an association

uasi-characters x of F* — smooth representations 7, of R.
q p X

The resulting representation 7, is called a principal series representation. It is not irreducible

in general, but it is if x is away from certain discrete subset of all quasi-characters. More-

over, 7, and 7,1 have the same semi-simplification. For x a character, that is to say, a

unitary quasi-character, in particular, 7, is always irreducible, tempered, and 7, ~ 7, 1.
With this setup, a tempered representation is either:

(1) of the form 7,, where x is a character uniquely determined up to the substitution
X ¢ X ';or

(2) isomorphic to a direct summand of L?(R); these form a countable set of irreducible
representations called the discrete series.

3.5.2. Definition of the tetrahedral symbol in the general case. We continue to suppose that
R is noncompact. Let Py be the set of isomorphism classes of irreducible tempered
representations. Because of the classification above, we can think of P, as a subset of
points of a complex analytic variety P:

P = {discrete series} H{quasi-characters of F* up to inversion }. (3.5.1)

In fact, Py is a subset of the real points P(R) for a natural real structure on P. What is more
important for us is that an analytic function on P that vanishes on P, is identically van-
ishing; therefore, there is at most one way to extend a function from P, to a meromorphic
function on P. The tetrahedral symbol thus extends:

Proposition 3.5.3. The function {1} extends to a meromorphic function on PE.

The proof is given in It is based on studying the the asymptotic behavior of
the integrand in that enters into the definition of {IT}, which in all cases is very
simple; for example in the nonarchimedean case it is a geometric progression, in suitable
coordinates.
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Remark 3.5.4. Recall that {IT} is defined only when TTg admits an H-invariant functional.
Whether this is so depends only on the component of PF to which ITbelongs. Consequently,
the function {IT} is simply identically zero on some components of P¥; and these can be
identified by means of e-factors using the results of Prasad, see

Remark 3.5.5. One way to interpret the proposition as giving an extension of tetrahe-
dral symbol from tempered representations to all irreducible ones. Indeed, there is an
identification of sets

P ~ {isomorphism classes of irreducible representations of R} (3.5.2)

defined as follows: we associate to x as above m, if it is irreducible, and, otherwise, the
unique finite-dimensional subquotient of 7, ([JL70, Theorems 3.3, 5.11, 6.2]). It is likely
that the function {IT} thus extended coincides, even for nontempered representations, with
a function defined by means of suitably regularizing the integrals appearing in
However, we do not examine this in the current paper, and the identification will
play no further role.

3.6. The sign ambiguity. Note that, even when {IT} is defined, {IT} is defined only up
to a sign. Unlike the classical situation, this sign ambiguity is essential: the meromorphic
function {IT}* described in the above proposition does not in general admit a meromorphic
square root. Of course, we could redefine the symbol to be {IT}* instead of {TT} but we
prefer not to do so for two reasons: first of all, it is {TT} and not its square that corresponds
to the 6j symbol; and secondly, the choice of sign is actually very interesting.

As a general convention, when we prove a formula of the form

{m=---,

we always regard the equality as being up to sign. However, in all important such
instances, and particularly in the formula in fact gives more: it gives a mechanism
to resolve the sign ambiguity, in the sense that we will produce an explicit meromorphic
function y which belongs to the same square class as {1}, and then VY IT} canbe globally
defined, not only up to sign.

It will turn out that our symbol {IT} enjoys the same symmetry properties as the classical
6j symbol (in fact, even more symmetries in some cases). Of course, since {IT} is only
defined up to signs, those symmetries are a priori also defined only up to signs. However,
by using the resolution of signs eluded above, we are able to make those symmetries
precise. Indeed, one of the miracles of the classical 6j symbol, is exactly that the Regge
symmetries are valid on the nose, without any unnecessary —1s; and we will achieve a
similar level of precision in[Theorem 5.1.1 Itis in fact impossible in our setting to achieve
only + signs, but we will have the next best thing and give a rather elegant description of
the signs.

All our work elucidating signs comes, however, at a price: one must make a choice of
orientation of edges; and in order to obtain the nicest formulas we even need to use a
slightly strange one, see the diagram (4.3.1).
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4. Dg AND THE TETRAHEDRON

It has been observed by various authors, and perhaps brought into the greatest clarity
by Rudenko [Rud22], that the geometry of tetrahedron is related to the root system Dg.
As we will soon see, the tetrahedral symbol reflects the geometry of the associated group,
and not just its root system.

In the present section, we will set up various notation that will make this connection
clearer. For us, the connection between the tetrahedron and D¢ will be “ carried” by a
homomorphism of rank 6 free abelian groups D¢ < Dg to be defined in In we
promote this injection of free abelian groups to a homomorphism of compact Lie groups,
and in we will examine how the Weyl group W(Dg) interacts with the symmetries of
the tetrahedron.

4.1. The lattice Dy and its tetrahedral avatar D¢. The coroot lattice of type D, will be
understood to be the sublattice of Z?™ consisting of elements of the form

(X1 e ooy Xy —Xnyeeey—X1)5 in € 27. 4.1.1)
i=1

Here, and in what follows, a lattice is simply a free abelian group of finite rank. It is
equipped with the reflection group W(D,,) = {1} x &, obtained by permutations of
the x; and changes of an even number of signs. It also contains a distinguished W(D,)-
invariant set of coroots, namely, all those vectors « that satisfy (o, ) = 2 for the standard
Euclidean inner product, and the reflections through their orthogonal hyperplanes gen-
erate W.

Following [Bou02, Plate IV], we identify D,, with the coweight lattice for the simply-
connected group Spin, by projecting to the first n coordinates. Here Spin,  means the
universal (two-fold) cover of SO, (C); it is a complex semisimple group. The reader who
prefers compact Lie groups can equally well work with its maximal compact subgroup,
which is similarly described as the the universal (two-fold) cover of the compact group
SO2n (R).

To relate D¢ to the tetrahedron, we consider the set of odd integral-valued functions on
oriented edges

D¢ :={f: O = Z | f(ij) = —f(ji)},

where we say that a function, with domain the oriented edges of the tetrahedron, is odd
if inverting an edge negates (or inverts, where appropriate) the value of the function. As
a convention, we will denote such a function f by means of the 2 x 3 matrix of values as
follows:

f(12) f(13) f(14)

f(34) f(24) (23) (4.12)

Then Dy is a lattice of rank 6, and there is an injection

D¢ — Dg (4.1.3)
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which sends a function f to the element of D¢ whose twelve coordinates are sums of values
of f on opposite edges. There are three pairs of opposite edges, but each comes with four
possible orientations; thus we get twelve such sums in all, symmetric under negation. For
definiteness, we take the first six coordinates of the element of Dg to be

f(12) + £(34), f(13) + f(24), f(14) + £(23), (4.1.4)

in the given order; the last six coordinates are uniquely determined by the first six.

4.2. The associated isogeny T of compact, or reductive, groups. The isogeny of lattices
has a more group-theoretic manifestation which will play an important role in[§ 8 Namely,
there is a commutative diagram

D6 ® Gm —— D6 ® G,
l l (4.2.1)

SL; ——— Spin,,
where the top row is an isogeny of tori induced from (4.1.3), and the bottom row is a
homomorphism of reductive groups in which these tori are maximal.

Here, the notation (- ) ® Gn, simply means that we replace integer variables in (- ) by
Gm-valued ones; thus, for example, D¢ ® Gy, can be considered as functions from oriented
edges to G, satisfying f(ij)f(ji) = 1. Also, as mentioned earlier, the reader who prefers
compact groups to reductive groups may harmlessly replace G, by the unit circle, SL, by
SU,, and Spin,, by the compact group of the same name.

To construct T, let C§; be a two-dimensional vector space attached to edge 1j with
standard basis {ey;, e;;}. Introduce a copy of SL, indexed by {ij}, namely, the unimodular
automorphisms of Cfj; its co-character group is then identified with pairs of integers
ayj, aj; satisfying ai; + aj; = 0. Taking the product over edges E we arrive at a model for
SLE whose maximal torus is canonically identified with D¢ ® Gy. Now, for each pair of
opposite edges {ij}, {kl}, taking tensor product of the defining representations induces a
homomorphis

SLY" x SLYY — SO, € GL(CH ® C3y),

Applying this construction to the three sets of opposite pairs — using the same order
that has been used in (4.1.4), that is: (12,34), (13,24), (14,23) — we arrive at a map
SL5 — SOs,, which lifts uniquely to the desired map 7 : SL; — Spin,, of #2.1). Note
that T isn’t an embedding: it has a finite kernel {£1}%.

7Here, to be precise, SO; is the split form attached to the symmetric pairing in which
(eyj ®ex1, €51 ®ew) = 1, (eyj ® e, &1 ®exy) = —1,

and all other pairings zero.
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4.3. W(D¢) and the symmetries of the tetrahedron. By means of we understand
W(Ds) to act on D¢ ® R. This action interacts richly with the geometry of the tetrahedron.
For example the constraint on dihedral angles is W/(Dg)-invariant, see

We shall now label several important subgroups, which together generate W(Dg): the
orientation reversals, tetrahedral symmetries (which come in two versions: the evident
ones, and ones that use an orientation), and the Regge symmetries:

e The group J ~ (Z/2)° of orientation reversals: for each ij € O there exists a unique
element of W(Dg) which acts on Dg ® R by “reversing the orientation of ij,” i.e.
negating the value of any function on ijﬂ Such elements generate an elementary
abelian subgroup J C W(Ds) of order 2°.

e The group T ~ &, of tetrahedral symmetries. These arise from physical symme-
tries of the tetrahedron, acting by permuting vertices in the evident fashion; for
example, (12) € &, will negate the value of f € Dg ® R at 12.

e The subset R = {114, 25, T36} Of Regge symmetries, indexed by pairs of opposite edges.
These “exotic” symmetries were written down by Regge; they do not form a group,
and they depend on choice of an orientation, that is to say, a splitting E — O.

— To elegantly resolve an important sign ambiguity down the line (see
and [Theorem 5.1.1), we will choose not the “dictionary” order, i.e. coming
from the order on the natural numbers 1 < 2 < 3 < 4, but rather the “vor-
tex”orientationﬂ defined by the following diagram (4.3.1), where we also use
blackboard bold numbers 1, etc. to denote each oriented edgem

1
3
1 2 4.3.1)
4
/ ‘\
2 6 3

— Note that the orientation is almost according to the dictionary order in V, with
one exception: the edge 31 is favored over 13, making the outer triangle an
oriented cycle rather than a simplex.

— For short we write 14 for the element associated to {12,34}, which is defined
as follows: For f € Dg ® R, let a, b, c, d be its values at 31,14,23,24, i.e. the
remaining four edges, oriented according to the chosen orientation. Then

8These should not be confused with the elements of W/(Dg) that switch the signs of some coordinates ;.

9There are multiple choices possible, but they are not completely random and the “admissible” choices
all lead to the same end.

We do apologize in advance for using different font shapes maybe a little excessively.
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114(f) has the same values at 12 and 34, but a, b, ¢, d are modified according to
a"-=s—a, b"=s—b, ¢f=s—¢, d"=s—4d,

+c+d

where s = 422 is the “semi-perimeter.” We proceed similarly for ;5 and

T36.

e For technical use only: the group T°" ~ &, of oriented tetrahedral symmetries.
These also arise from physical symmetries of the tetrahedron, but taking account of
orientation. We identify D with functions on the set E using the vortex orientation
of (4.3.I), and then X" acts in the natural way on E. Thus, for example, the
transposition (12) € &, acting on f € D¢ leaves its value at 12 unchanged. We call
T the oriented tetrahedral group. .

To avoid potential confusion when compared with notations such as (4.1.2), we empha-
size again that
the vortex orientation is to be used only when we consider the symmetries T and
R, particularly the subtle sign issue associated with them. By default, in all other
instances unless specified otherwise, we use the ordering orientation.

We now discuss some of the group theory of how these various groups interact. For
the moment, the reader can skip this discussion, and refer back to it as necessary:

Lemma 4.3.1. Together with the group of orientation reversals J, either the group of tetrahedral
symmetries T or the group of oriented tetrahedral symmetries T generate the same subgroup of
W (Ds); this subgroup is isomorphic to (Z/2)° x &,.

Lemma 4.3.2. Suppose we put the oriented edges in the following matrix:

12 31 14] [1 2 3
34 24 23| |4 5 6|’

and let

(1) i be the Regge symmetry that fixes the i-th column (so that v1 = 114, and so on);

(2) hi € T fix the i-th column and swaps the two rows in the other columns;

(3) vi € T fix the i-th column and swap the two columns other than the i-th.
Then the group generated by T°" and R is isomorphic to &3 x &4, with &3 generated by {hir; =
rihi}, and the commuting &4 generated by {viti = 1ivi}.

Proof. Relabel coordinates x1,...,x¢ in Dg (cf. @.1.1)) as Y1, y3, ygi, so thaty7 correspond
to 12 + 34, yf correspond to 31 + 24, and so on. Then 11, hy,v; act as follows: 11 swaps y3
with y§ and negates y5,y3; hi negates y; and y;, and v; swaps y5 with y3. Then vi1y
(resp. hy1y) fixes four of the coordinates and acts as a reflection in the remaining two:

b W] ] [0 ]
Yy Yy Y3 Y —Ys —Y; Yy Y Y3
The action of the other v;r;s and h;r;s is similar. The result is now an easy exercise. [ |

Lemma 4.3.3. Any of the following collections generate all of W(Dg):
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(1) the group J and subset R;
(2) the groups 3, T°", and any single element in R;
(3) the groups 3, T, and any single element in A.

Proof. We use the notation in the proof of Lemma 4.3.2l Considering the permutation
action on the y*s and ignoring signs gives a map W(Dg) — Sg. We will first of all
describe the images of J, %, T°" under this map:

e Orientation reversal symmetries have image in &¢ given by a transposition that
switches y;” with y; for one value of i. Consequently, the image of of J in &g is
isomorphic to (Z/2)3.

e Regge symmetries in R induce transpositions on the y*s while fixing all y~ coor-
dinates.

e Oriented tetrahedral symmetries in T°": these stabilize the y*s and y~s and act on
them according to the same permutation of the index set 1, 2, 3.

Conjugating orientation reversal by Regge symmetries, we can produce any transpo-
sition swapping any one of {y7,y3,y3} with any one of {y7,y5,y3}, and then further
conjugating by orientation symmetries, we can produce all transpositions. So, the group
generated by J and R surjects onto G, with kernel a permutation-invariant subgroup of
(Z/2)§ (the subscript means elements of sum zero). The order of this kernel is at least 8,
since J has order 2° but its image in &4 has order 23; therefore, this kernel is all of (Z/2)§.

Clearly A is contained in the group generated by a single Regge symmetry and €°', so
the second claim follows. The third claim then follows from N

Remark 4.3.4. Here is a manifestation of W(Dg) in the geometry of Euclidean tetrahedra.
For such a tetrahedron, choose an odd function 6;; on oriented edges so that [0;| gives the
ij dihedral angle and put

x = image of "% € D¢ ® C* inside Dg ® C*.

Then [PF20, § 3, (2)] says precisely that the constraint to form the dihedral angles of a
Euclidean tetrahedron takes the form

P=0

where P is a W(Dg)-invariant regular function on the torus D¢ ® C*. In fact, Dg ® C* is
the maximal torus of the group Spin,,, and in this way we can regard x as an element
of the compact group of this type. With this identification, the polynomial P is given
by a linear combination of the characters of the trivial, half-spin, adjoint, and symmetric
square representations.

4.4. The “vertex” and “face” half-spin representations. The spinrepresentation of Spin,,,
and its relation to the geometry of the tetrahedron through the prior discussion, will be
particularly relevant for us later on, and we set up notation now.
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Recall that, given an element of Spin, . whose image in SO;,, has standard eigenvalues
AT,..., AL, its eigenvalues in the two half-spin representations are collectively given by

MDA 1 4

One half-spin involves those eigenvalues with an even number of —1 signs, and the other
half-spin involves the remaining eigenvalues, i.e., those with an odd number of —1 signs.

In the case of Spin,,, both the half-spin representations are of dimension 32. Each
half-spin gives rise to a set of weights in the dual of Dg, and so also, by means of D¢ — Dy,
to a set of 32 weights in the dual of D¢. For one of the half-spins, which we call §, this set
of weights consists of all functionals

£ £F(1) £ f(ik) & f(il),

that is, where we sum f over three edges that meet at a vertex. For the other half-spin, the
set of weights is similarly defined but now involving three edges that span a face. We will
be interested in the first, or “vertex”, half-spin representation S. Note that:

e The pullback of S via T : SL5 — Spin,, is given by the sum of four copies of
C? ® C* ® C?, where we tensor together the standard representations for each
triple of edges that meet in a common vertex.

o If we choose x € D¢ ® G, specified by a set of coordinates x;; satisfying xijxji = 1,
the eigenvalues of the corresponding toral elements on S are the 32 products

XXX (4.4.1)

where {ij, ik, il} = O; are edges sharing one vertex i.

There is an important splitting into a direct sum of Lagrangian subspaces
S=S"aS7,

stable under the diagonal torus of SL5. Namely, we take S* to contain all eigenspaces
arising from eigenvalues where there are at least two +- signs amongst the exponents;
similarly, we define S~ to correspond to eigenvalues where there are at least two negative
signs amongst the exponents.

5. THE MAIN THEOREMS

In this section, we formulate the two main results of the present paper. The first
(Theorem 5.1.1) shows that {TT} enjoy a W(Dg)-symmetry in the principal series case. The
second (Theorem 5.2.1) gives an explicit evaluation when IT is additionally unramified.
Both theorems give explicit ways, within the contexts to which they apply, of resolving
the sign ambiguity of {IT}.
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5.1. Weyl symmetry for principal series. Let us assume R is split and consider now the
tetrahedral symbol on principal series representations. As we will see, in this situation,
we will be able to resolve the sign ambiguity and also will find a symmetry by the Weyl
group of Dg.

We will first fix a good parameterization of such representations by character-valued
odd functions on oriented edges:

X ={xi € Fx I Xi5%5i = 1},
where FX denotes the set of characters (i.e., unitary quasi-characters) of F*. As observed
after (4.2.T), the space X can be identified with the tensor product of abelian groups:
De ® FX —5 X, (5.1.1)
f @A +— Xy = AT
For such x;, let 7ty; be the principal series attached to xi;, as has been defined in

note that the isomorphism class of 7;; does not depend on the order of i and j. By analogy
with the standard notation for classical 6j symbols, we shall write

X12 X13 Xua | _
{X34 X24 Xzs} RS

for {IT} in this case. It turns out that {IT} is not identically zero on any components where
all 7t are principal series. By [Proposition 3.5.3, the square of this symbol extends from
X to a meromorphic function on the space X¢ of odd functions from oriented edges to
quasi-characters.

In order to make better sense of this, we will need to consider the map

De ® FX — Dg @ FX. (5.1.2)
induced by Dg — D¢ from {.1.4). The right hand side can be considered as collections of
characters, ..., Vg, together with a chosen square root of the product \ - - - Pg; the morphism
(5.1.2) sends x;; to the s given by X12X32> X13Xap, X14Xa3 together with the square root of

their product given by x12X13X14. In particular, all products xiijxiikxﬁ, as well as all products

of the form xiijxﬁxfi, depend only on the image of x;; under (5.1.2).
To efficiently state our main results, we introduce the following set of 32 characters:

S = {xixgxi|ie v} (5.1.3)
where for each of the four i € V, we allow all possible choices of the three signs. This
S is visibly an avatar of the weights of the spin representation introduced in § 4.4; the
connection will be made even clearer in We divide S = ST [[S~, where ST C S
contains all terms that involve either three +1’s in the exponents, or two +1’s and one —1,
whereas S~ =S — S*. Write y(s,S),v(s,S"),v(s,S™) for the corresponding y-functions,

where we follow the notation of|§ 2.2.5|and define y(s, —) for a multiset to be the product
of the constituent y-functions; we have

'Y(S, S) = 'Y(S, S+)‘Y(S) Si)



THE TETRAHEDRAL (OR 6j) SYMBOL 23

The following is our first main theorem:

Theorem 5.1.1. We have the following results:

(1) The value of {x}* depends only on three-fold products xfﬁxﬁxﬁ and in particular the rule

X — {x)” factors through the map
X ~ D¢ ® FX — Dg @ FX, (5.1.4)

in such a way that the extended function on the right hand side is invariant by the action

of W = W(Dg) (cf.[§ 4.1|for the W-action).
(2) More precisely, the rule

X12 X13 X1 T o
— )
X {X34 X24 X23} y<2) )
can be globally defined on Dg ® FX: there exists a meromorphic function 1 defined on
Ds & F* that agrees with the right-hand side for suitable choice of sign of \/y. This function

can be chosen to depend only on products of the form XXXy, and satisfy the following
W-equivariance:
Iw' ) _ Lw, X) (1 s+ mw(s—)) (5.1.5)
I(X) - )X Y 2) ) A
where \(w,Xx) € £1 is characterized by the fact that the right hand side of is a
1-cocycle of W valued in the multiplicative group of nonzero meromorphic functions on
D¢ ® F¥, and the following facts, using notation as in
(a) when w € T is a tetrahedral symmetry or w € R is a Regge symmetry, ((w,x) = 1;
(b) when w is the element s; that exchanges xi; with Xji, Uw,X) = XikXiXjxXj(—1),
where {i,j,k, 1} = V.

A proof is sketched in The proof proper appears in|§ 12.3

Remark 5.1.2. (1) Wenote that the extension of {x} to D¢ @FX isno longer the tetrahedral
symbol for R, because is not surjective. It would be interesting to interpret
the extension in terms of tetrahedral symbols for a spin group rather than R, i.e.,
in the noncompact case, SL; rather than PGL,, cf.
(2) It is not a formality that a choice of signs for 1(w,X) exists. It is equivalent to the
following fact: the 2-cocycle on W defined by

(w,W’)'—>(XH I w(—n)

PpesStwlpes—
(ww’)"Tpest

is cohomologically trivial.
(3) We will define the function I using a certain hypergeometric formula for the tetra-

hedral symbol (see[§§ 6.3|and [7).

(4) The statement above does not directly cover Regge’s original symmetry of 6j sym-
bols, which pertains to the case of R compact. We outline our expectations about

this in
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5.2. Evaluation of {IT} in the unramified case. Suppose now that F is nonarchimedean,
and let T C C* be the unit circle. There is an embedding of groups

T —» FX
1
z— (X — zvaF(X)),

which, in words, sends a complex number z of absolute value 1 to the character of F* that
sends a uniformizer to z. The image of this homomorphism gives the unitary unramified
characters of F*, i.e., those that are trivial on the maximal compact subgroup O* C F*.
The isomorphism identifies the subspace Xy C X consisting of unramified unitary
characters with the tensor product

:X:O ~ D6 (024 —ﬂ—, (521)

and by [Theorem 5.1.1} the function J,, descends to a W(Dg)-invariant function on

Ds ® T = the maximal torus of Spin,,,

where we now understand Spin,, to mean the compact group of that type, and the
identification was that discussed after

Now, the W(Dg)-invariant function on Dg ® T are precisely those arising by restriction
of class functions (i.e., conjugacy-invariant continuous functions) on Spin,,. It is there-
fore, we hope, irresistible to ask for a description of this class function in terms of the
representation theory of Spin, ,.

As discussed in there is a 32-dimensional half-spin representation S of Spin,,
whose weights pull back under Dg — Ds to the 32 linear functionals

[£F(ij) + f(ik) + f(i1)}

where {ij, ik, il} = O; are edges sharing starting vertex i. It contains a distinguished 16-
dimensional cone of pure spinors P C S (for details see[§ 13.2) viewed as a complex subvariety
of S. Its ring of regular functions C[P] then affords a weighted C* = G, (C)-action induced
by the scaling on S.

Theorem 5.2.1. Suppose T is nonarchimedean and x € Xo with image o € Dg @ T. Then

4233
{Xlz X13 X14}: (1—q77) Tr(q*%g’([j[])]), (5.2.2)

X34 X2a X23 L(%,S)

where q* acts on C[P] through the weighted action of C*, and S is as in (5.1.3).
A proof is sketched in and detailed in

In words, up to normalizing factors (see for a geometric point of view concerning
the factor (1 — q—2)3), the tetrahedral symbol is the weighted character of the Frobenius action
on the algebraic function ring of the spinor cone. Why are the half-spin representation and
the spinor cone involved? Relative Langlands duality offers at least a context in which

to understand this, explaining, for example, why the spinor cone is actually Lagrangian
inside the half-spin; see[§ §| for discussion.



THE TETRAHEDRAL (OR 6j) SYMBOL 25

5.3. A sketch of the proofs of Theorems 5.1.1/and |5.2.1, In|§ 6.3} we will write down an
explicit integral formula (the “edge formula”) for {x}, whose proof is in The integral
is then made more explicit in into a hypergeometric form. It will be clear by then — for
example, from (7.2.2) — that {x}~ depends only on characters of the form XithﬁXﬁ- This
proves (5.1.4).

For the W(Dg)-symmetry, we construct explicit symmetries of {x} that generate the
whole Weyl group, corresponding to the generators discussed in[§ 4.3} The least trivial ones
are the Regge symmetries, which come from a Fourier duality result for hypergeometric
integrals. This proves the symmetry up to signs. The signs can then be pinned down
using the Mellin transform of the hypergeometric integral from [§ 14.6| See [§ 12| for the
details.

Now consider [Theorem 5.2.1} The right-hand side of can be computed using the
Weyl character formula after we decompose C[P] into irreducible Spin,,-representations.
To analyze the left-hand side we rely on another integral formula (the “vertex formula”ﬂ
for {x} that we will prove in it leads to a computation involving the Bruhat-Tits tree
of PGL,(F). A direct comparison of both sides is thus conceptually possible yet seems a
bit tedious to do even with a computer. We will instead compare both sides in these steps:

(1) Showing that both sides are meromorphic with the same set of simple poles;

(2) Assisted by a computer, showing that their residues agree (which is significantly
easier than comparing the whole expressions);

(3) Showing that the difference of both sides is a bounded function with value 0 at a
single input, so it must be identically 0.

For details, see

6. INTEGRAL FORMULAS FOR THE TETRAHEDRAL SYMBOL

In this section we will give a class of integral formulas for the tetrahedral symbol.
They are based on the interaction between tetrahedral combinatorics and the geometry of
certain R-spaces.

They come in two classes, which can be seen as dual to one another: a vertex integral
which takes as input an R-space X and a collection of R-invariant functions ¢;; : X* — C
indexed by (unoriented) edges, and an edge integral which takes as input a R-space Y and
a collection of R-invariant functions {; : Y*> — C indexed by vertices. These are given,
respectively, by

IY(X, ) :=J

R\XY

H @ij(xi,%;), and (Y, ) = J Hlbi(yij)yik)yu).
ij€E R\YE jev

In both forms, the group R acts on XV or YE diagonally, and the integrands are R-
invariant. The symmetry between the two constructions is a little clearer if we describe
the situation in words: To each X-labelling of vertices, i.e. “tetrahedra in X,” we can attach
a number, namely, the product over edges e, of the values of ¢. on vertices incident with

"n principle we might try to use the hypergeometric formula as well, but but the vertex formula seems
to be easier to work with for this purpose.
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e. We obtain IV by integrating this number over the space of X-labellings of vertices. For
I¥ we just switch X with Y, vertices with edges, and ¢ with 1.

6.1. Vertex formula for R compact. The following vertex formula, valid for R compact,
was already given by Wigner.

Proposition 6.1.1 (Wigner). Suppose that R is compact. Then {TT} is the vertex integral IV (X, @)
associated to X = R and @i;(gs, g;) the character of T; evaluated at gig; 1

= | Tl tomlog "

RY ijeE

Proof. We follow the notation of|§ 3.4.1| Let § € T represent the contraction mapping, so
that (v,8) = (v) for all v € V. By definition, {IT} = (V, §). Now, for any vector v, w we have

(V,v)(V, w) =L (v, w),

for both sides determine H x H-invariant functionals on TTg ® TTg with the same value 1
at V ® V. Substitute v=w = § to find:

e = JH(hé, 5).

However, [Lemma 6.1.2|below implies that for h = (g;)icv, we have
(hé, 6) = H Tr Oﬂij (glg)_] ),

{jEE
which readily implies the desired formula. |

Lemma 6.1.2. Suppose W is a finite-dimensional complex vector space equipped with a nondegen-
erate symmetric pairing (—, —). Let & € W ® W represent the pairing, so that (8,v@w) = (v, w).
Then

(Ad,0) =Tr(A)

for any endomorphism A of W.

Proof. Fix an orthonormal basis e, with respect to the self-pairing (—,—). Then 6 =
Zk ex X ex and
(A8,8) =) (Aex, er) =Tr(A),
K

as claimed. [

6.2. Vertex formula for F nonarchimedean and 7 unramified. Suppose now that R is
noncompact and the 7y; are unramified principal series (see induced from x;;. In
this case, each 71;; admits a one-dimensional space of vectors invariant under the maximal
compact subgroup

K cCR.
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Explicitly, in the non-archimedean case, with reference to an isomorphism R ~ PGL,(F),
we have K ~ PGL,(0O). We will henceforth assume that F is nonarchimedean; the discus-
sion below goes over in the archimedean case with minor modifications.

We shall describe a class of vertex formulas, valid for such representations. Take X to
be R/K where K is as above. Fix v;; € 7; a nonzero K-fixed vector normalized so that
(vij, vij) = 1; this is possible because, again, the symmetric pairing is positive definite on a
real structure. Therefore vy; is uniquely specified up to sign. Now define @i; = XxX — C
by the rule

¢4 (9iK, g;K) = (givij, gjvyj).
This is the “spherical function for 7t;;”.

Proposition 6.2.1. With the notations above, we have (up to sign)

{Xlz X13 X14}: L(T,ad) 'IV(X ©)
X34 X2a X23 L(2)8 L(%,S) ’

L(T,ad)
[ T(gvis, gvi) |

L(2)8,/L(3,S) Jgiew ij€E

where, on the right-hand side, we take counting measure on the discrete set X, and put on R the
measure for which the volume of K equals 1, S is as in[§ 5.1} and

L(1,ad) = [ J LWL, %510, x5%),
j€E

and recall the convention that L(s) is the value of the L-function for the trivial character at s.

Remark 6.2.2. In words, [Proposition 6.2.1| asserts that (up to the normalizing factors) we
obtain the tetrahedral symbol by integrating over “moduli of tetrahedra in X” the product
of spherical functions labeled by the edges. Note that it implies that there is a coherent
sign choice for the normalized tetrahedral symbol when the 7s vary through unramified
representations.

Proof of |Proposition 6.2.1, Again we follow the notation of |§ 3.4.11 Let
V= ®(Vi)’ ®Vij) e Tlg.

j€E

We shall compute separately A" (v) and (A")’(v). By definition,
AW = | (g, g = j T esteus) =1 @/K o).

R\H 1]€E

On the other hand, A" (v) must be evaluated by hand. It is known (a special case of
[1110, Theorem 1.2], or an easy if rather tedious computation in the case at hand) that

A v) =128 —1. (6.2.1)
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Comparing this with the definition (A™)" = {TT}A", we arrive at the claimed formula. B

The same reasoning also works in the case of F archimedean, but we do not know a
reference for the computation (6.2.1)) there.

6.3. Edge formula for principal series. The edge formula will be applicable to the case
of the split R and the 71;; principal series induced by character x;;, for which we retain the
notations from

We take Y = P]. The {; will not be functions on Y x Y x Y itself, but rather sections
of certain line bundles — they will be functions on F? x F? x F2, with certain degrees of
homogeneity in each factor. Their product will define a (—2)E-homogeneous function on
(F2)E, i.e. a density — this can be integrated over YE ~ (P!)E as explained in[§ 2.4

The functions ; are defined (as sections of suitable bundles) on that open subset of YE
where adjacent edges are assigned distinct labels (in Y), as follows:

ll)i = 11’111)15 }»
where {i,j,k, 1} = Vand
=X (90 A0 = 0 s A o), an = X000

Here we write x /Ay, for x,y € F?, for the determinant of the 2 x 2 matrix with x as first
row and y as second row. This introduces a sign ambiguity in the definition of ! due to
the order of j and k. There is a “good” way to make such a choice; we will suppress this
for now, but for details we refer the reader to[Lemma 11.6.1]

Proposition 6.3.1. With the notations above, we have

v (35) = v EPL D)

= V[EZJ H (M| : |_;) (Uij /\Uik)) (6.3.1)
R\(P)E (o Xil
where vp is as in (3.2.3). The integrals are absolutely convergent for x unitary. (Note that the

second expression is simply the explication of the notation; in it, jk € E is the opposite edge to that
defined by il.)

An outline of the proof towards this formula will be sketched shortly in and the
details will be contained in§ 11}

Although is compact, it is a little opaque, so we offer two different reinterpreta-
tions of it. The first will be given now, and the second in[§ 7] This first interpretation will
also help us see that the formula is absolutely convergent when 1) is unitary.

6.3.2. Interpretation of (6.3.1) in terms of moduli of six points on the projective line. Let us
consider the space M° of configurations of six points on P! indexed by E where the points
indexed by incident edges are distinct (thus, the points indexed by opposite edges may
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collide). PGL; acts freely on this space, and upon taking the quotient we arrive at a moduli
space

M°® = M°/PGL,,

which more concretely amounts to configurations of three points with certain distinctness
properties, see below.

We first define a section Q of the square of the canonical sheaf w? on M°. First of all,
consider the formula

(Ae dxe)’
He;ée/(xe - Xe’) ’
where e, e’ range over pairs of edges sharing a vertex; the overall sign depends on the
ordering in the numerator, but this will not matter for us. It defines a section of the square
w? of the canonical bundle, on the open subset of M° where the x. actually lie inside
A' c P'. This section, however, extends to M°. The form Qy is PGL;-invariant, and we
can “divide it” by the square of the fixed algebraic volume form on PGL, (see (3.2.2)) to
arrive at a corresponding section Q of the square of the canonical sheaf on M = M/PGL,
itself.

Om =

(6.3.2)

Remark 6.3.3. For later use we explicate both M° and Q). We may identify
M ={(x,y,2) € P ix £y, y #z,x ¢ {1,000y ¢ {00,0},z ¢ {0, 1}} (6.3.3)

To do so, we use the PGL,-action to identify M° with the subset of M°® where x14 =
0,x13 = 1,%p3 = 00, and take x = X12, Y = X24, 2 = X34 for the remaining coordinates. Upon
comparing (6.3.2)) with (3.2.2), we deduce that the form Q is given by

(dx A dy A dz)?
xyz(x —y)(y —2z)(1 —z)(1 —x)°

Q= (6.3.4)

Next, we define a morphism
w: M° — Dg ® Gy, ~ G,

by requiring that, for ij € O, the ij coordinate of y is given by the following rule: move
Xij to co by means of a projective transformation, and then set

Xa —Xb

=2t 6.3.5
Mo = (6.3.5)

where the three distinct edges a, b, e meet at i and the three distinct edges c, d, e meet at
j. Again, there are choices of ordering here; we make them so that p;p; = 1. This is not
unique, but different choices only affect the ;s by a sign.

Now |Q|? makes sense as a a volume form on M?° (F) for F a local field, so long as we fix
a Haar meausre on F This permits us to state the following:

2Indeed, for each point xo € M°(F) we choose an analytic isomorphism @ : U ~ U, , from an open subset
U C F™ onto an analytic neighbourhood U,, of xo in M°(F); analytic means that it is given by convergent
F-valued power series. The pullback of Q by means of this form has the shape A(z1,...,zn)(dz1 A-- -Adzn)?
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Proposition 6.3.4. We have an equality, up to sign,

E(ml 1)) — (s (%) - 1O
(Pl W) = ve JMO(F)EXU(M(X» fel (636)

where vp is as in (3.2.3), wis as in (6.3.5) and w; is the coordinate of w corresponding to ij € E.

Proof. This is simply a rewriting of the second line of (6.3.1). In carrying out this verifica-
tion, it is convenient to use a more intrinsic formulation of (6.3.5): if x;; are homogeneous
coordinates of P! corresponding to ij, then

Wy = (x5 Ayi) (x5 A zi) (y; A z4)
T By Ay Az (Y A zi)

where y;, z; (resp. yj, z;) correspond to the edges other than ij connected to i € V (resp.j €
V); we recover our prior description by moving x;; to co. Yetagain, the sign of these wedges
above is of no concern to us. Finally, the factor vp comes from the fact that in IE(P}, )
we used the Haar measure on R rather than the measure induced by (P')? to define the
measure on R\ (P')E. |

With this intepretation at hand, we will prove the convergence claim of [Proposition 6.3.1]

in§10.2

6.4. Outline of the argument for (6.3.1). The proof requires us to be careful about iso-
morphisms between different models for the same representation, in a way that will seem
excessively pedantic. However this is the price we pay for having a very short definition
of the symbol: complexity gets transferred to the set-up phase of computations.

For each ij € O, let 7tj; be the induced representation from x;;; it is realized in the space
of sections of a line bundle on P!, as described in detail in Note that my; # 7154,
but they are isomorphic; in fact, by definition of the principal series model, the fact that
XijXj1 = 1 will give rise to a natural pairing

Tij X TGy — C.

Fix a splitting E — O, that is to say, a choice of orientation of each edge. For each
such chosen orientation ij € O, we fix a symmetric pairing on 7;; and an isomorphism
Ie: my — 754, and we transport the symmetric pairing from 7t; to 7t5; by means of the fixed
isomorphism I..

Put

Mg = ® Tij = ®(7fij ® T51),
ijeo ij€E
Mg = ®(7[15 ® Tt ),

ij€E

for an analytic function A. The integral of f over the analytic neighbourhood U, is then declared to be the
integral of (f o @) x |A| 2 against Haar measure on L.
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where we use the splitting to choose an ordering in the second definition. Both TTg, IT;
are endowed with symmetric self-pairings arising from those on 7t;;. The representa-
tions T1g; and Tlg, together with these pairings, are isomorphic by means of the chosen
isomorphisms I.:

I= ®Iei (”/G) (_)_)) ;> (HG) (_)_))

Our definition of the tetrahedral symbol is expressed in terms of IT;;. But unfortunately
the contraction functional does not look nice in the natural induced model for TT(;. This
problem is remedied by switching to T instead: it is realized as the space of sections of a
line bundle on (P')°; and a D-invariant functional ¢ on TTg given simply by integration
over the “diagonal” (P')E, i.e. the closed D-orbit, whereas an H-invariant functional ¢ on
T is given by integration over the open H-orbit on (P')°. After computing the constant of
proportionality relating I*$p™ and AH, as well as the constant of proportionality relating
[*$P and AP we are reducing to answering the question: when we average ¢ over H,
which multiple of ¢ do we get?

When we average ¢ over H, we in effect are pushing forward by means of the map

Hx (PHE — (PH)°.

From this analysis, it follows that {IT} is an integral over the fibers of this map. Now,
the projection map from a general fiber onto (P})E is readily verified to be a birational
morphism. This gives us an expression for {IT} as an integral over (P})E. After we work

out the details in we get (6.3.1).

7. HYPERGEOMETRIC FORMULAS FOR THE TETRAHEDRAL SYMBOL

In this section, R is split and 7;; are irreducible principal series. We will describe
formulas for the tetrahedral symbol of hypergeometric type (I'heorem 7.2.1), and in the
case F = R we will simplify the resulting formula to a sum of 4F3 hypergeometric series
evaluated at the special point z = 1.

7.1. Hypergeometric functions on Grassmannians. Now let k < n be integers. Let
X = (x1,...,Xn) be n characters of F* with the property that

[Txi=11™
i

Let X C F" be a k-dimensional subspace. Then the integral

=], PE (7.1.1)

makes sense at least formally, as the function is —k homogeneous and can be integrated
over the projective space PX, according to the general procedure of Such functions
for F = R were studied by Aomoto, Gelfand and others. They can be considered as
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generalizations of Gauss’s hypergeometric function, which corresponds to the case when
k =2,n =4, and X is spanned by the rows of the matrix

1011
01 1t
where t € R is a fixed parameter.

7.2. The hypergeometric formula for the tetrahedral symbol. Now let X be the subspace
of F® (so that k = 4, = 8) of the form

X=x=-Yyy—z,z—=wW,Ww—x,X,Y,z,W) C FS)
and define an 8-tuple of quasicharacters
X= 06 X1 )G XX XX XE )

where we use notation similar to that of

1. XijXik
Xi="
Xit
and recall the subscript “—” means that we multiply by |-|~2.

Theorem 7.2.1. Let x € Xo, with the notations of (5.2.1), and let X and X be as above. Then the
tetrahedral symbol associated to x can be expressed as a hypergeometric integral, where we integrate
X over the projectivization of X:

X12 X13 Xua | <1 S,) :V—1J 721
{X34 X24 Xzs} Y 2’ : PXX) 720

and both sides are absolutely convergent for x € Xo.

Proof of [Theorem 7.2.1| from |Proposition 6.3.4, The right-hand side of (7.2.1), aside from the
factor vu;1 , is the following integral:

o U = 2w v X (o (2w
x,Y,z,W]EP3(F)

which, more explicitly, turns into the following, upon de-homogenization and expansion:

4 3

[ 3 =y —2né = I (= xd (xd (- (2)dxelyds

_J (x(1—x)) (1—x) (X(y—2)> (2_1) ((X—_‘J)Z)
B F3X12 X—y X x(z—1) X (1 —x)yz xas xX—y e yly —z)

y(z—1) o
Xad <z(y —2) > xyz(x —y)(y —2z)(z = 1)(1 —x)| 2 dxdydz. (7.2.2)
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This amounts to the explicit content of [Proposition 6.3.4, once we use the explicit coordi-

nates provided by [Remark 6.3.3, drawn as below:

1
0
x w (7.2.3)
4
/ \
2 e 3

Examining the labelling from this remark, we readily verify that the arguments of the x;;
are just the p;; from [Proposition 6.3.4 |

7.3. The tetrahedral symbol as a convolution of y-functions. The following striking
formula can be derived, after some manipulation, from [I'heorem 7.2.1, and uses the same
notation (we also remind the reader of the notations in[§ 2.2.5):

Proposition 7.3.1. Abridge pi; = {xij, Xji}, Define four-element subsets A, B of characters as,
respectively, the union of Xa1 ® P12 and X23 & pas, and the union of p13 and XazxXa1 ® P2a. Then

{Xu X13 X14} . VD;] J‘uY(% + €>A & M)YU — €, Bi] ® FL71 )du
- )
X34 X24 X23 \/y(%, A®B-T)

where p ranges over characters of F*, whereas € is any complex number with real part between 0
and 3.
2

The proof will be given in|§ 14.5

7.4. The case F = R: expression in terms of 4,F;. Using Mellin transform, we can relate
the tetrahedral symbol to generalized hypergeometric series. For simplicity, we assume

(7.3.1)

xez =11y xa=11 xu=I1",
s =11 xaa=11% xz=1 1,

where Jy,...,Js € C. Here, we choose x3; instead of x;3 only because in the
blackbold 2 is the label of 31; the orientations themselves have no impact here. The
general case can be derived with the same method, but we only give explicit statement
about this special case. We use shorthandssuchas Jj,3 = —J1+]J2+]3, Ja3sg = J2+J3+]Js5—Js,
and so on.
Then in[§ 14.6|we will show that we can express the tetrahedral symbol as a sum of 4F3s
in two different ways:
_ L(%’ST) F (]ﬁ23+%a]ﬂ23+%alz46+%a]ﬂﬁ+%‘]>
V(33607 Uz3s6) v (J22) Jasss + 15 J336 + 1, Jo2 + 1

my(3)-
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B L(3,S3) 4F3(]1‘1§@+%Ju56+%Jﬁ4§+%>]m+% ‘ 1)
Y (J23s6)Y (J35) v (J2356) Jasse + 1, )55 + 1, Ja356 + 1

B L(3,S3) \ 3(]1]56‘}"%)]1]56"_%)]MS—'—%»]MS—'_% ‘ ])
Y (J2335)Y(J33) v (J2336) Ja3s6 + 1, )55 + 1, J2356 + 1

L($,S3) Jizs+ 5 i+ 5 a6+ 5 Jaas + 5 ‘ 1)

_ 2
Y(J22)v(J2336)Y (]235@)4F3( Jaz + 1, J23s6 + 1, Jasse + 1

(/L _ 557/ 4F3(Iiz3+%»]ﬁ@‘*‘%»]ﬁsﬁ"‘%»]ﬂ%‘*‘% ’]
Y(Ju1)v ]11341@) (J13z6) Jit + 1, J5336 + 15 1346 + 1

n L(3,S5) , 3(]n23+%JH@JF%»]H@JF%JHMJF%‘])
YJi1Y U7346)Y Ji336) Jin + 15 J1336 + 15 1346 + 1

n ( y S5/) 4F3<]246"‘%313454'%)]3454'%»]2464'% ’ 1)
YJ1336) Y (J1336) Y (Jaz) Jiza + 15 Ji346 + 1, Jaa + 1
n L(%vSZ/) 4F3<JZ46+2)]34S+23134S+231246+ ) 1)
Y (Ji346)Y(J1346) Y (Jua) Jizzs + 1, Jizae + 1, Jaa + 1
Here S3,...,S; and S7/,...,S}, are certain slightly modified versions of S~ (details in

[§ 14.6). For generic Jy,...,Js, the eight 4F3s on both right-hand sides turn out to be
absolutely convergent at 1 and so the expressions are well-defined. See, also, for a
discussion of related results in the literature.

In particular, our results imply that there exists a 4-term combination of 4F3s whose value at
1 satisfies W (D¢ )-symmetry. We have not been able to find this statement in the literature; it
fits in a broader patterm of extra symmetry enjoyed by evaluations of generalized hyper-
geometric series, cf. [FGS11]. In this connection, we observe that the Thomae symmetry
of 3F, hypergeometric series is, in the same fashion, related to the Regge symmetries of 3j
symbols.

8. LANGLANDS DUALITY, THE TETRAHEDRAL SYMBOL AS AN INTERFACE

We now sketch a picture that is Langlands dual to the tetrahedral symbol. It does not
shed much light on the proofs, and it may seem as if we are simply translating into an
arcane tongue. But it was instrumental to the discovery of our results; it brings out the role
of the group Spin,, rather than merely its maximal torus and Weyl group; and, although
we do not pursue it here, this language suggests natural avenues of generalization.

8.1. Tetrahedral symbol via a correspondence. First of all, let us explain how the defini-
tion of the tetrahedral symbol is a special case of an invariant attached to a correspondence
between spherical varieties. Recall the notation of (3.2.1):

G=R° D=RE H=RY,
sothat G ~ R'2,D ~ R H ~ R*. Let X, Y be the corresponding homogeneous spaces:
X =D\G, Y=H\G.
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Let C*(X) (resp. C*(Y)) be the space of smooth C-valued functions on X (resp. Y). We also
regard elements in C*°(X) as functions on G that are D-invariant on the left, and similarly
for C*(Y). With TTg as defined in we consider the diagram of G-representations

Av (811)

where the morphisms of ITg into C*(X) and C*(Y) are “distinguished” embeddings,
which s to say that their values at the identity coset are given by the normalized functionals
AP AH that were specified earlier; the vertical map is the averaging integral:

Av(f)(x) = f(hx)dh.

J (DNH)\H
The Haar measure is fixed as in the beginning of the paper, and we assume that Av
converges absolutely on the image of TTg (which turns out to be true for tempered TT). We
can reinterpret the tetrahedral symbol {I1} as describing the scalar by which this diagram fails
to commute.

8.2. Interface and its dual. The key ingredients in the above definition are two spaces
X, Y and the correspondence

X+—Z7Z—Y

where Z := (D N H)\G; the averaging operator amounts to pulling-back and pushing-
forward along this diagram. Now an important theme of relative Langlands duality is
that, in order to achieve symmetry between automorphic and Galois sides, it is convenient
to switch to symplectic geometry, i.e. to re-code spaces by their cotangent bundles. From
this point of view we should replace X and Y by M = T*X, N = T*Y and replace Z by the
Lagrangian correspondence

L == conormalto Z C M x N.

In the language of [BZSV24], this defines an interface between the hyperspherical varieties
M and N, and it is reasonable to search for a dual interface

LcMxN,
where M, N are the respective relative Langlands duals for M, N. The paper [BZV] does
this for various naturally arising classes of L; however, in all examples of that paper, both
L and I are smooth. The tetrahedral symbol offers one of the first interesting cases where

this is not so.
The dual group of G is

G =SL,(C)° ~ SL,(C)".
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Consider also the dual D = SLE ~ SL,(C)® which we regard as a subgroup of G in the
obvious way, i.e., corresponding to the map O — E where we forget orientation. (Note
that, in general, an embedding D C G does not induce an embedding of dual groups; but
in the current case we just use the obvious embedding.)

According to relative Langlands duality, the Hamiltonian varieties M = T*X and N =
T*Y are respectively dual to the G-spaces

M =T*(G/ ~@Pciech
iev

In fact, N is the pull-back of a half-spin representation S of Spin,, by means of the
homomorphism

:D=SLY — Spin,,

that was described in (£.2.1). Note that are fwo half-spin representation of Spin, ,, only
one of which restricts to N (see for more details). Accordingly it makes sense to
consider within N the cone P C S ~ N of pure spinors. The reader can refer to for
a description of P as a subvariety of S.

We are now ready to describe what we think is the picture in relative Langlands duality
that underlies the theory of the tetrahedral symbol.

Key proposal: The dual interface to the tetrahedral symbol is the induction
of the cone of pure spinors P C N from D to G:
[=GxPP. (8.2.1)

where the projection from I to M factors through the zero section G/D — M,
and the projection to N is given by (g,v) ~— gv.

This picture, for example, “explains”[Theorem 5.2.1} in a sense discussed further in

and §9.7

9. FURTHER TOPICS

What we have proved in this paper gives, we think, a deeper context for the Regge
symmetry of the classical 6j symbols. However, the classical 6j symbols has many other
beautiful properties too, and it would be interesting to study these from the point of view
taken in this paper. We will give a brief discussion of a few such points here.

The classical 6j symbol plays a distinguished role in the theory of orthogonal polyno-
mials: it gives the most general class of orthogonal polynomials in the Askey scheme of
orthogonal-hypergeometric polynomials. See [Lab85| Koo88]. Classical orthogonal poly-
nomials satisfy both orthogonality relations and difference equations; and in and
§ 9.2 we discuss, respectively, the orthogonality and difference equations that hold in the
context of this paper.

Secondly, the tetrahedral symbol has played an important role in analytic number theory
(although apparently this connection has not been explicitly made previously). In the first-
named author’s work on the subconvexity problem for L-functions, a key role was played
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by a certain spectral reciprocity formula relating two sums of L-functions. In this formula,
as observed in [MV10], there is a somewhat mysterious integral transform. This is, as
we shall sketch in precisely the integral transform associated by the two-variable
function obtained by fixing four of the six inputs to the tetrahedral symbol.

The relationship of the tetrahedral symbol to relative Langlands duality could be more
deeply understood in many ways. In we use the general formulation of Langlands
duality to discuss the situation beyond the principal series case. In we formulate a
conjecture relating the tetrahedral symbol to the representation theory of Spin,,, and in
§ 9.7/we discuss associated questions in geometric representation theory.

We do not touch on another important role of the 6j symbol: namely, its role in the
Turaev-Viro [IV92] invariant of 3-manifolds; it would be interesting to look at this, too,
from the dual viewpoint.

As this section is primarily meant to serve as a source of motivation for futher work, we
will not always give full details, particularly around issues of convergence.

9.1. Orthogonality. Like many classical special functions, the tetrahedral symbol has
remarkably rigid orthogonality properties.

Fix a pair of opposite edges of the tetrahedron: let us take them to be {13, 24} and assign
tempered representations to the remaining 4 edges. We can then regard the tetrahedral
symbol as a function of 0 = 3, T = 724, which we denote by {IT} ., and which we will
regard as a function

ot/

iPo X ZP() — C,
(o,7) —A{IT}

oT)

where we recall that Py is the tempered dual of R, i.e. the set of irreducible tempered
representations up to isomorphism.

The support of this function is a direct product, i.e. if {IT}, . and {IT}, . are nonzero,
then {IT} is not identically zero on the component of Py x Py containing (oo, T). Indeed,
the condition for {IT} to be not identically vanishing on the component containing (o, T) is
that all four of the R3-representations

Ty ® 0 QR Ty, T3 Q0K T3y, T @ TR T3, Ty QT T3

admit R-invariant functionals.

Now this Py has a natural Borel structure; and a choice of Haar measure on R determines
upon Py a canonical measure, the Plancherel measure, characterized by the fact that for a
continuous compactly supported function f on R we have

f(e) :J . Tr.(f)dT. (9.1.1)

Then the orthogonality is expressed by means of:
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Proposition 9.1.1. The function {T1}_._ is the kernel of a unitary transformation:
L2(Pe")) — L2(P),

fr— (0‘ — J{ﬂ}mf('t)d’c) .

and where CPéa) X iP(()b) is the union of all components of Py x Py on which {11} . is not identically
zero.

We sketch a proof in|§ 15.1} Actually, we will establish a more precise statement, which
we now explain. Set

L =Ty ® T3 @ Tiag @ Ty,

anirreducible representation of R*. A choice of 0 = 113 and T = 714 determines R-invariant
functionals

E13 =E; € 2" and Exy=E;. € > (912)

in the following way. First fix symmetric self-duality pairings on all 7ty; including o, 7.
Consider first

I®o®0 (M ® M ® Ms) @ (T ® Ty @ m2)

/ .

~
7'[03 7'[01

We normalize functionals A; on the first factor o, and A; on the second factor 7o, by
means of the same recipe as in (3.4.3). To produce E, contractin the o variables to produce
a class in *, that is to say, sum over e; ® e; € 0 ® 0 where e; is an orthonormal basis with
respect to the fixed symmetric self-pairing on o; it is presumably not difficult to verify the
convergence of this summation. The construction of E. is precisely parallel using instead

L R®T®T Mo, ® Mo,
and forming functionals A,, A4 on the two factors.

Proposition 9.1.2. There is a natural Hilbert structure on (£*)* with the property that the rules
f— Jf(O')EGdO', g— Jg(T)ETdT

extend to isometries

L2(PL) or L2(PY)) — Hilbert completion of L*.

Moreover, the two isometries are intertwined by the transformation of |Proposition 9.1.1}
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9.2. Difference and differential equations. Specialize to the case F = R; a variant of the
following discussion applies for F = C too. In these cases, like many classical special
functions, the tetrahedral symbol then satisfies a large system of difference equations:

Quasi-characters of F* all have the form x — [x|* or x — sgn(x)[x|*, which we parame-
terize by (—1,s) or (1,s) in {1} x C respectively. Restricted to principal series, then, the
tetrahedral symbol defines a meromorphic function on

((£1} x €)°

Fixing a choice of signs, we get simply a function on C®. This function satisfies a
holonomic system of difference equations, where holonomic means, roughly, that the difference
equation has only a finite-dimensional space of solutions if one imposes suitable growth
constraints. This follows from [Proposition 6.3.1, or even more conveniently from its
reformulation in (7.2.2).

Indeed, as we see from (7.2.2)), what we are doing is pushing forward Lebesgue measure
from (an open subset of) R* to (R*)¢, by means of the map

(x,y,z) = (X>1 —x,x—y,y—z,z,1 _Z)a

and taking a Mellin transform of the resulting measure p. Difference equations for that
Mellin transform correspond to differential equations for the pushforward measure p; and
that such differential equations exist in plenty follow from the fact that holonomic D-
modules are stable under direct image. See [Oak18] for a very explicit discussion of such
differential equations.

It would not be difficult to explicitly write down these difference equations, for example,
starting with some of our hypergeometric representations. What would be particularly
interesting would be to “index” the resulting system by the geometry of the spinor cone.

9.3. Theassociativity kernel and analyticnumber theory. The unitary integral transform
indicated in [Proposition 9.1.1| has played a significant role in number theory; we sketch
this in a typical example. We will, for this subsection, freely assume familiarity with the
language of automorphic forms.

Let us fix an anisotropic quadratic form Q over a totally rea global field F; let SO;
denote the associated orthogonal group over F. For each place v of F, we let F, be the
corresponding local field. Let S be a finite set of places.

Now let 711, T3, 734, 7141 be automorphic representations of SO3, all of which are unrami-
tied outside the set S. Foreachv € S, let f, be a continuous function of compact support on
the tempered dual of SO3(F, ). Then we have the “associativity” formula (the terminology
used in [MV10, § 4.5.2]):

L,L4 B L3504 5
Z LS)(1, 7p4, ad) vllf\)(ﬂ%” B Z LS)(1, 7113, ad) \gf‘)(ﬂm"’)’ (9.3.1)

T4 13

13This enables us to avoid some irrelevant analytical issues because the Ramanujan conjecture is known.
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where f, < Fv is the transform of Propositionm the sum is taken over all automorphic
representations 7,4 or 73, with local constituents 7,4 , and 73 ,, that are representations
of SO3(F, ), and

Li= \/US) <%)7Tij B 7ty X 7Tu>>
where {i,j,k,1} = V, and L®) means that we take L-factors only outside S. The meaning
of is that there exists a choice of signs for the various square roots such that it is
valid. Understanding the choice of sign, from the point of view of L-functions, is a very
interesting and rather unexplored question.
We sketch a proof of here, at least for a class of f. Take factorizable \; € m; and
expand

[ wrbsbsps = 3 e x [t 932)

Tlq P ETY

where we sum first over automorphic representations 7,4 and then over orthogonal bases
for 1y4; the integrals are over the adelic quotient associated to SO3. Using the Ichino-Ikeda
formula (see [I110] we rewrite this as

¢ LaLa- [ [Ea (W1 ® by @ sy @ay)

veSs

fy(7t24,0)

where c is a constant depending on measure normalization, and the other notation is
as in (9.1.2), with a superscript (v) to remind that we are working with SO;(F,); note
that E;Z) depends on 71,4, and so indeed defines a function f,, on the tempered dual of
SO;(F,). Now, compare this expansion with a similar expansion of according to
the {14, 23} grouping; one gets a similar structure, now involving a factor fv(nm)v) given
by Eyy) (W1 ® 2,y @ W3 ® Pay). We conclude by |Proposition 9.1.2l

9.4. Tetrahedral and 6j symbols for SU,. There is a significant body of prior work related
to this paper concerning the question of defining 6j symbols for SL,(R) or SL,(C). To our
knowledge, all this work is based on definitions parallel to that of rather than|§ 3.4.3
that is to say, realizing 6j symbols as “associativity kernels,” rather than in a fashion that
manifestly has the symmetry of a tetrahedron. We will briefly review some of this work.

Let us first note that, although the map SL, — PGL, is almost an isomorphism, the
representation theory has significant differences, because of the failure of multiplicity-
one: given irreducible representations V; and V, of SL, over a local field, the irreducible
representations appearing in the continuous part of V; ® V, may have multiplicity 2.
However, there are a number of cases related to SL, where the multiplicity one holds, in
tull or in part:

e The case of SL,(C). Here we have multiplicity-one in general ([Nai59]). The 6j
symbols were first defined by Ismagilov [Ism06,Ism07], who gives explicit hyper-
geometric formulas (as a sum of the products of two 4F3; hypergeometric series)
for representations that descend to PGL,(C). Mellin—Barnes integrals for bona
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fide SL,(C)-representations were obtained and further studied by Derkachov and
Spiridonov [D819]H Finally, relations to elliptic hypergeometric functions were
studied in [DSS22].

e The case of SL,(R). Here one does not have multiplicity one in general, but it
remains valid in various situations where some of the representations are discrete
series. Such are the situations studied by Groenevelt [Gro03,Gro06|], who expressed
the relevant 6j symbols in terms of Wilson functions, which can be written as the
value at 1 of certain ;Fs-function, or an equivalent form of a sum of 4F3-functions.
Note that the latter form may be compared with our results in and one may
ask whether a similar consolidation into 7Fs-functions is available.

For some further discussion of how to address such examples within our framework,

Genuine multiplicity two arises when tensoring two principal series of SL,(R). Such
cases have been studied by Derkachov and Ivanov [DI23]]; the definition implicitly depends
on the choice of bases for various multiplicity spaces (cf. [Ival8]). It would be interesting
to analyze this from the point of view of relative Langlands duality, which indeed suggests
in many instances the existence of preferred bases for multiplicity spaces.

9.5. The local Langlands correspondence. The local Langlands correspondence permits
a generalization of our prior notions of v, L, and e-factors, which seem well adapted to
the general study of the tetrahedral symbol.

Let F be a local field. Attached to F is a certain modification of the Galois group, the
Weil-Deligne group Wr of F ([Del73, § 8.3.6]). All that is important for us now is that there
is a canonical isomorphism

Wb ~ Fx

and so characters of F* can also be considered as characters of W§; we will do this without
comment. Now, given a representation

0: Wy — GL,(C)

we can define y-factor y(s, p), the L-function L(s, p), and the e-factor €(s, p), each mero-
morphic function of a complex variable s. In the case when p is one-dimensional, and
therefore a quasi-character of W® ~ F*, they coincide with the prior definitions from
They also satisfy a relation analogous to (2.2.3), replacing now x ' by the contragredient.
In the general case, L(s, p) always has the form []{", L(s, X:) for various characters x;, and
€(s, p) always has the form a - b*, but m can be smaller than n, and the values of a, b are
in general difficult to determine.

The significance of the representation theory of Wr comes from the local Langlands
correspondence; it asserts that there is a map 7 — p, from irreducible representations of X,

14We expect that it would be straightforward to check that their formula agrees with the ones in§ 7, but
we have not done so.
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to representations
p: Wy — SL,(C), (9.5.1)

where SL,(C) is the Langlands dual group to R. The representation p, is also called the
Langlands parameter of . For example, if 7t is the principal series attached to a character
x of F*, the corresponding representation is given by p = x @ x ' where we identify x
with a character of Wr through W2® ~ F*. The map that associates to 7 its Langlands
parameter is injective.

The tetrahedral datum TT of gives rise to a parameter pr;: Wy — SL5, and this can
be composed with the map t: SL; — Spin,, in to obtain a map

p%ﬂn: WE — Spin,,.
One aspiration that underlies much of this paper is to

Express the theory of the tetrahedral symbol {1} entirely in terms of p?f’in.

Our main theorem|Theorem 5.2.1|has accomplished this in the unramified case. We will
give now some further examples in this direction.

9.5.1. Components on which {IT} vanishes identically. The inclusion of the center {+1} — SL,
induces

Z :={+1}* — Spin,,,

whose image commutes with p?,pm. By a general construction of Gross and Prasad, ex-
plained in [GP92, § 10], we obtain from this a character

P: Z — C*¥,
namely, we associate to each z € Z the e-factor e(%, S===1) for the action of W, acting via

p?}gm, on the (—1)-eigenspace of z € Z acting on the half-spin representation.

Lemma 9.5.2. If a nontrivial functional A" as in|§ 3.4.3|exists,  is trivial. Conversely, if \ is
trivial for a given p : W — SLS, then there exists T1g with Langlands parameter p (possibly after
replacing R by the isometry group of a different quadratic form) for which A" is nontrivial.

Proof. To check 1 is trivial, it is enough to check that its value on the ij copy of —1 is trivial.
The (—1)-eigenspace for this element is given, as a representation of SL5, by

(C30CHL®ChH) @ (CLRCHLeoChH),
where {i, j, k, 1} = V. Therefore, the condition is that
1 1
€(§» Pij @ Pik & pu) = €<§a Pji @ Pj1 & pjk>

and since this holds for each i, j we find that the value of €( %, Pij ® Pik ® pit) is independent
of i € V. We now apply the beautiful result of Prasad [Pra90] characterizing trilinear
invariant functionals. i
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9.5.3. Generalization to SL, from the point of view of Langlands parameters. Let us sketch an
approach, within our framework, of how to extend the tetrahedral symbol to the SL, case,
and how it fits with the duality formalism. The key role is played by the algebraic group

G*=SLY/zZ/,

where the subgroup Z' ¢ Z = (£1)F of order 8 within the center of SLE consists of
those elements whose product around each face is trivial. Equivalently, Z' is generated by
elements which are nontrivial around a given vertex

The dual group G*hasa remarkably similar description, but now one quotients SL, (C)®
now by those elements whose product around each vertex is trivial. The morphism t does
not descend to @, but the action of SL,(C)E on the half-spin S does. What this means is
that, given a parameter

Wr — G* (9.5.2)

one still define a representation of Wr on S, even though one cannot define in general a
Spin, ,-valued representation of it. A parameter gives in particular an L-packet of
representations of SL, (F) for each edge, such that the product of central characters around each
vertex is trivial; that is precisely the situation in which the classical 6j symbol for SU, is
meaningful.

It seems likely that most of the results of this paper would carry over to this situation,
i.e., attach a tetrahedral symbol {IT} to a datum as in (9.5.2). The embedding H — G
that played a crucial role earlier is to be replaced by H — G* x G*/Z* where Z* is the
antidagonal copy of the center. We have not verified the details but expect that multiplicity
one holds in this context, permitting us to carry over our definitions verbatim; and it is
likely that the same theorems also hold with cosmetic modifications.

9.5.4. Completing Regge’s original symmetry to a W(Dg)-symmetry. The prior discussion has
an interesting manifestation related to the Regge symmetries as originally envisioned by
Regge. Restrict now to the case when F = R, and let us consider the classical 6j symbol
attached to the matrix | of non-negative integers given by

J= {h )2 B} — {]1 )2 )3} ec,
Ja )5 Je Ja )5 Je
i.e., in our language, the tetrahedral symbol attached to the 2j + 1-dimensional representa-
tions of SO3. The condition for this to be defined is, with our convention, that the triangle
inequalities associated to all four vertices are satisfied, e.g. ji,j2,j3 are the lengths of a
Euclidean triangle, and so forth.

The Weil group of the real numbers is an extension of C* by an element c (for “conjuga-
tion”) satisfying ¢ = —1, whose action on C* is given by conjugation, i.e. czc™' = z. The
representation p;j, as in , associated to V5j, 1, is given by
ei(2ji+1)0 0

0 1
e -—
0 e—i(25+1)9:| y Cr>Coj = {_] O} . (9.5.3)

piiz=re

Note that p; ~ p_j_1.
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Let us consider ] as defining a class in D¢, by sending each edge with positive orientation
to the corresponding value of 2j + 1 (and the opposite orientation to —2j — 1); using the
isogeny D¢ — D¢ we shall think of this as a cocharacter J for Spin,,. The representation
Pspin is then given by

re’® = J(e*), ¢ Wy, (9.5.4)

where Wy is a representative (induced by (9.5.3)) for the longest element of W(D), which
negates all variables. Let us observe that any two such representatives are in fact conjugate
under the maximal torus, and so the conjugacy class of isindependent of this choice.

Although we are no longer in the principal series case, it remains of interest to examine
what symmetries of the tetrahedral symbol might be induced by W(D¢). If we replace J in
by w(J) for w € W(Dg), the resulting homomorphism remains conjugate to (9.5.4).
The various w(J) correspond to various collections

Ja )5 Je
In general, the ]’ are only half-integral. However, they satisfy a parity constraint: the sums
of ]’s along triples of edges emanating from a single vertex are integers. In fact, this parity
condition is closed under W(Dg)-symmetry; in other words, we may relax the assumption
on | to that ] has half-integral entries satisfying the same parity conditions.

One checks by direct computation that, for generic J, there are 15 possibilities for |’
modulo J x T; here 15 arises from the index of J x ¥ inside W/(Dg) (cf.[Lemma 4.3.1). The
various ]’ do not correspond to homomorphisms Wy — SL5, but the parity properties
noted above imply that they do correspond to homomorphisms Wy — G*, with notation
as in and thus define L-packets of discrete series representations of G*(R). The
tetrahedral symbol can then be defined according to the discussion of

In order to define it in all cases, however, one needs to switch between G*(R) and
its compact form to cover all cases. Indeed, the reasoning of implies the
following all-or-none property for ]’ as above: either the triangle inequalities are satisfied
for all the vertices, or for none of them. In the six cases (represented by the subgroup
S; in where all triangle inequalities are satisfied, we interpret entries of
J" as indexing representations of SU,, and use the classical 6j symbol; in the remaining
nine where no triangle inequality is satisfied, we interpret them as indexing holomorphic-

antiholomorphic pairs of discrete series for SL,(R). With this setup it becomes natural to
ask:

Question 9.5.5. Are all of these extended classical 6j symbols for the 15 J’s — six attached
to SU, and nine attached to SL,(R) — actually equal, up to sign and a normalizing
v-factor?

If true, this means in effect that the original Regge symmetries can indeed be “com-
pleted” to a W(Dg) symmetry, even though the Regge group is very much smaller. Quite
possibly this question is accessible through some of our hypergeometric formulae, or
through the prior work of Groenevelt [Gro03, Gro06|], but we have not examined it.
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9.5.6. Formulas outside the principal series case. |Proposition 7.3.1|can be generalized beyond
the principal series case using the Langlands formalism. Let us suppose that 74 and 71,3
are principal series, but make no supposition about the remaining 7ts. In the statement of
IProposition 7.3.1| we can then simply replace the roles of p;; by the Langlands parameter
of the representation 71;;. Then we anticipate that formula remains valid; we have
an argument for this, but have not verified the details, constants and so forth, and will
return to it elsewhere.

9.6. Functoriality and Spin,,. Langlands duality provides a “lifting”
irreducible representations of R® — L-packets of representation of PSO1,(F)  (9.6.1)

associated with the morphism SLS — Spin,, of dual groups. Our discussion of duality
suggests that the tetrahedral symbol factors through the lifting (9.6.1).

There is a natural for the function on the right which pulls back to the tetrahedral
symbol, as we now sketch. Namely, we can use the same general setup as[§ 8 we consider
two PSOj;-spaces X, Y and an averaging intertwiner from X to Y, and compute the scalar
by which below fails to commute:

Av (9.6.2)

where A%, AY are “normalized” embeddings of the PSOs,-representation IT into X and
Y. Our proposal is, for well-chosen X and Y, the resulting function on (certain) PSO,-
representations agrees with the tetrahedral symbol after pullback via (9.6.1).

Relative Langlands duality suggests natural choices for X and Y: For X we take the
Langlands dual to the 32-dimensional (hyperspherical!) half-spin representation S of
Spin, ,; it is a generalized Bessel model for PSO+,. For Y we take the Whittaker model for
PSO,, so its Langlands dual is a single point. Finally, to define the intertwiner Av, we
average over over the smallest G-orbit Z in X x Y that supports an invariant distribution.

In the language of Z defines a Lagrangian

L :=conormal of Z C M x N :=T"X x T"Y,

whose dual L € M x N = S we expect to be precisely the cone of pure spinors. There
is no other reasonable candidate for L: the preimage of 0 under the moment map for the
half-spin representation is already an irreducible Lagrangian.

9.7. Geometric representation theory. We will now indicate a geometrization of
We work now over the field F = F, ((t)), and write O = F,[t]. We use the same
notations G,D,H,X,Y,Z,M = T*X,N = T*Y, M, N as from we have aLagrangian
[ € M x N “induced from” the cone of pure spinors P C N.
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Now, the geometric conjecture of relative Langlands duality asserts that there are equiv-
alences of categories:

) shear

constructible sheaves on X;/Go ~ (coherent sheaves on M /G ,

constructible sheaves on Y¢/Gg ~ (coherent sheaves on N /G)shear,

(We omit technical details about the exact categories, which can be found in [BZSV24];
also, the superscript “shear” means that the category is to be regraded as in loc. cit.; the
details are not presently important.) Moreover, the equivalence above carries the “basic
sheaf”, the constant sheaf on X or Yy, to the structure sheaf on the coherent side, and is
compatible, in a natural way, with the Satake equivalence.

The diagram X <— Z — Y gives rise, by pullback followed by pushforward, to a func-
tor Ly, (for “automorphic intertwiner”) from constructible sheaves on Yr/Go to ind-
constructible sheaves on Xr/Go. (Note that to actually define this requires examination
of technical details that we have not carried out; the spaces X¢, Y, Zf are not pleasant.) A
natural conjecture is that this functor is equivalent, with respect to the equivalences above, to the
push-pull Ispec along the diagram

M/G+—1/G — N/G. (9.7.1)

As we sketch in [§ 15.2) our [Theorem 5.2.1} in the case of nonarchimedean F of finite
residue characteristic, would result from the statement by taking Frobenius trace.

Part 2. Proofs
10. CONVERGENCE AND THE ANALYTIC CONTINUATION

We prove all results related to convergence and analytic continuation in this section.

10.1. Proof of |Proposition 3.5.3, Let X be a smooth algebraic variety over the local field
F and f; a family of smooth C-valued functions on X(F) depending analytically on the
complex parameter s € C™, or, more generally, a parameter s belonging to a complex
analytic manifold.

Definition 10.1.1. We say f is “a controlled family of functions on X(F) depending ana-
lytically on s, ” or for short controlled, if there is a smooth compactification X — X, with
normal crossing boundary, with the following property: for each point x € X(F) and
N > 0, there exists an analytic neighbourhood U, C X(F), local equations z,...,z, for
the various divisorial components of the boundary passing through x, and an asymptotic
expansion of the following form:

fo=Y gis+O0(z1z2-zN). (10.1.1)

where each g; ; has the form

R X [zq]9 )z onts)
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with h; ¢ a smooth function on U, varying meromorphicall in s, and the a;(s) analytic
in s.

Lemma 10.1.2. If Y is a closed subvariety of X and f is controlled on X then the restriction of f
to Y is also controlled.

Proof. Let Y* be the closure of Y within X. Theboundary Z = Y*—Y is a closed set, but need
not be a normal crossing divisor. Then we find an embedded resolution of singularities,
i.e, amap m: Y — Y* with the property that 7~ '(Z) is a union of normal crossing divisors.
In that case, the pullback of any local equation z; as above must have the form [], w
where the w; are local equations for boundary divisors on Y. From this we see that f; on
Y satisfies the same condition. |

Lemma 10.1.3. Suppose f is a controlled family of functions on X, and let w be a volume form
on X. Suppose the integral

1(f,) :zj £, ool
X(F)

converges absolutely for some s. Then I(fs) can be meromorphically continued to all s.

Proof. We analyze this by local computation, following Igusa, using the asymptotic ex-
pansion (10.1.1). Using a partition of unity reduces our statement to the meromorphicity
of

J Bo(z) % 21| - [z o)

where ®(z) is a smooth compactly supported function of z;,...,z, € F" that varies
holomorphically in s, and, by the assumed absolute convergence, there exists some value
so of s for which the real part of a;(so) is larger than —1.

If F is nonarchimedean, we reduce to the case when @, is the characteristic function of
a product of intervals |z; — z;,| < C, and we leave the verification in that case to the reader.

In the archimedean case, we repeatedly integrate by parts to replace an integral by one
in which all the a;(s) have real part larger than zero, and the integral becomes absolutely
convergent. For example, in the case F = R and n = 1 the relevant identity is

2N
JR ((1(_2](\11)|X|s+z1\1 —(s+1)...(s+2N) J¢(X)’X|s

This shows that the integral becomes holomorphic upon multiplication by a polynomial
of the form [ (ai(s) + 1)(ai(s) +2) ... (ai(s) + 2N). Our assumption on the s, shows
that this polynomial does not vanish identically. |

BNote that by a “smooth function varying holomorphically,” what we mean is that it is a holomorphic
function of s with values in the space of smooth functions with its natural topology; in the real or complex
case, this is the topology induced by requiring uniform convergence of all derivatives on compact sets; h is
a smooth function varying meromorphically if h(s)P(s) is holomorphic for some choice of polynomial P.
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For us, an important example arises as follows. Suppose, to simplify the dicussion, that
F is nonarchimedean, and fix an open compact subgroup of R. We need some language to
be able to speak of “holomorphically varying families of vectors in holomorphic families
of representations.” Let P be the complex analytic space described in (3.5.1). By an abuse
of notation, we will understand a point 7t € P to index the corresponding representation if
mtis discrete series, and the associated principal series representation if 7t corresponds to a
quasi-character of F*. With this understanding, for each 7w € P, the space of fixed vectors
7t is finite-dimensional, and the various 7i¥ fit together to give a finite-dimensional holo-
morphic vector bundle over P, the “bundle of K-invariants.” The holomorphic structure
is described as follows: positive dimensional components of P correspond to families of
principal series representations, and the condition for a section of the vector bundle to be
holomorphic is that all its point evaluations at points of F> —{0} be holomorphic. Similarly,
the family of Jacquet modules , i.e., the largest U-invariant quotient of the various 7ts, again
fit together to a holomorphic vector bundle over P, where the holomorphic structure is
determined by requiring that the map n* — 7 induces a holomorphic map of bundles for
every K.

Having fixed this, we fix a self-pairing (—, —), for each m € P that varies meromor-
phically (i.e., it induces a meromorphic self-pairing on the vector bundle ¥ for each K);
for example, such a pairing will be fixed in It induces, by work of Casselman, a

self-pairing (—, —)z on the Jacquet-modules 7. This “Casselman” pairing is characterized
by the following property: for any v, v, € 7w we have
(axvth)ﬂ — (ax\_)h\_)Z)ﬁ (1012)

for a, = diag(x,1) whenever [x| is sufficiently small. In fact, for each open compact
subgroup U there exists ¢(U) so that (I0.1.2) holds whenever vy,v, €  and [x| < ¢(U).
In particular, (—, —)x also varies meromorphically. With this setup we can assert:

Lemma 10.1.4. Suppose that 7t +— v, and 0 — W, are holomorphic sections of the bundles
of K-invariant vectors over P. Then the function P x PGL,(F) — C, associating to m € P and
g € PGL;(F) the number (gv., Wx), is a controlled family of functions on PGL,(F) parameterized
by the complex manifold P.

Proof. We use the embedding PGL, — P(Mat;). A local analytic coordinate system for a
point on the boundary has the form k; a,k, where k;, k, range through open neighbour-
hoods in K, ax = diag(x, 1) as above, and [x| < c. The desired properties follow from
and the following fact: for the principal series induced from ¥, the Jacquet module
7t is two-dimensional and the eigenvalues of a, upon it are given by x, and (x ') |

Proof of |Proposition 3.5.3] For each e € E choose a holomorphic family of vectors i) pa-
rameterized by 7t € P. Tensoring together, this induces a holomorphic family of vectors
in the family of representations of R* parameterized by PE.

It is enough to show that both the integrals [,,(hv;,v,)dh and the integral
Jirp i AP (hv)dh of (3.4.4), where vi,v,, v are chosen to be holomorphic families of the

type just described, vary meromorphically over PE.
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The first integral amounts to taking a family of matrix coefficients on PGL,(F)© param-
eterized by PF, pulling it back to H, and integrating. The second amounts to taking a
family of matrix coefficients on PGL;(F)©, again parameterized by PE, pulling it back to
(D N H)\H =~ (PGL,(F))?, and integrating. In both cases, family of matrix coefficients
is controlled after pull-back by applying [Lemma 10.1.4] and the desired result thereby
follows from [Lemma 10.1.3| |

10.2. Proof of the absolute convergence in [Proposition 6.3.1, We start from the right-
hand side of (6.3.6). For absolute convergence, since all x;; are unitary, it suffices to assume
that they are trivial. Thus it reduces to show that M has finite volume with respect to the
volume form

ot = | Dedxe
- b
\/He;ﬁe’ Xe /\ Xe/

in which e, e’ are unoriented edges that share exactly one vertex. Let us recall from (6.3.4)
that the statement to be proven can be put in a concrete form, namely,

1
LS xyz(x —y)(y —z)(1 —2)(1 —x)|2

< 0

First arqument via high school calculus. We only sketch this. Suppose that F = R for
ease of visualization. We need to choose coordinates around each potential singularity of
the integral and check local convergence. As an illustration, let us check conergence in
x? +y2+2z? < 1. We work in spherical coordinates. We can neglect the terms (1—x)(1—z).
Discarding these, the function is homogeneous of homogeneity degree —5/2; and since
f; T75/2r2dr < oo it suffices then to verify that |xyz(x —y)(y — Z)[2is integrable on the
unit sphere. The singularities of this function lie along five great circles, and again it is
enough to check local convergence. The most problematic singularity is x =y = 0 where
three great circles meet; but in local coordinates (u,v) near that point, the function looks
like [uv(u + v)|?, which is verified to be integrable by passing to polar coordinates.

Second argument via algebraic geometry. Algebraic geometry offers a more systematic way
to write the prior type of reasoning, at the cost of requiring rather more background. Using
the classical theory of moduli stack of marked curves (see [Knu83]]), we can compactify
M to a projective variety M (because we are considering genus 0 curves) whose boundary
M —M? is a union of smooth divisors with normal crossings. When this is done, we have

Claim. Q) has at most simple poles along each boundary divisor.

The absolute convergence then follows from the simple fact that the function !el_% is
locally integrable near € = 0.
The irreducible components of the divisor M — M?° can be put in three types:
(1) 2 points (i.e., x,s) collide;
(2) 3 points collide in a generic fashion;
(3) 4 points collide in a generic fashion.
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We leave the (easy) first case to the reader, and explain why O has at most a simple pole
along all divisors of the other two types. It suffices in both cases to choose a coordinate
chart (a, b, €) near any generic point of the divisor, where € = 0 defines the divisor, and
compute Q in local coordinates.

In the three-point case, we take our coordinate chart to be given by

Xe = b+ €,Xe = b + ae,xer = b, remaining xs = 0, 1, oo,
where a # 1 and b ¢ {0, 1}. In the four point-case we take our coordinate chart to be
Xe = 0,Xe/ = €,Xer = A€, Xem = be, remaining xs = 1, 0o,

where a,b must avoid thelocia =0,a=1,b =0,b =1and a = b. In the three-point
(resp. four-point) cases, the expression for Q is then
(ede Ada A db)? (e?de Ada /A db)?

resp.
b p €k )

ck
where k is the number of adjacencies amongst the edges e, e’, e”. Evidently k < 3 in the
three-point case. In the four point case we note that not all four of e,e’,e”, e’ can be
simultaneously adjacent, and so k < 5. In both cases the order of pole of () is then at most
1 as desired.

10.3. Proof of the absolute convergence of (3.4.4). We must verify that the integral of
AP (hv) over HND\H is absolutely convergent. Now AP (hv) is a certain product of matrix
coefficients of tempered representation; by the results of Cowling, Haagerup and Howe
[HCHS88, Theorem 2], these are all majorized by a matrix coefficient of a suitable tempered
principal series representation. Therefore it suffices to check the absolute convergence
when all 7tj; are tempered principal series, i.e. principal series associated to unitary
characters x;;; but in that case the integral has been computed explicitly and proved to
be absolutely convergent in [Proposition 6.3.1 (actually, the proof of absolute convergence

was was just given now, in § 10.2).

11. COMPUTATIONS WITH PRINCIPAL SERIES

Our goal here is to prove the edge formula for principal series, stated in We
already outlined the general plan of the computation at that point; the main issue is to
be very careful about the normalizations of various functionals, because it is otherwise
rather easy to compute the answer only up to an unspecified constant.

We follow the notation set up in[§ 6.3} so that we assign characters x;; of F* to oriented
edges such that xijx;i = 1, and let 7t;; be the corresponding unitarily induced principal
series representations. Let Bx C R = PGL, be the standard upper-triangular Borel in R
and B = BY the Borel in G.

11.1. The plan of the computation. Recall that {IT} is defined using a D-functional on
T, denoted by AP and an H-invariant functional denoted by AH. What we will do, here,
is to compute with a different normalizations of such invariant functionals, which we
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call P, d", and then deduce what we want about AP, A". Then we compare A" with
another H-invariant functional obtained by averaging AP:

(A v HJ AP (hv)dh.
HND\H
Due to the technicality of this section, we give an outline of the argument for the reader’s
convenience:

e In[§ T1.2) we set up notations related to principal series.

e In|§§ 11.3|and [11.4)we carry out computations related to normalizing bilinear and
trilinear pairings on principal series.

e In(§ 11.5/we define ¢P (resp. ") and write AP (resp. A™) in terms of it.

e in|§ 11.6/we compare the H-average of ¢ with ¢

o In we conclude the proof, conditional on a computational lemma, which is

proved in|§ 11.8

11.2. Setup on principal series. We will summarize some essential properties and nota-
tion related to principal series for R. In what follows, we abridge x(det g) to x(g). We
have fixed a local field F, and characters and measures are fixed as in[§ 2.1]

There is a very useful way to parameterize vectors by Schwartz functions, namely there
is a natural projection C°(F?) — 7, where we force a function f on F2 to have the desired
degree of homogeneity along central directions, namely, we send

f(z) — fy(z) = J

AEFX

X ZAAf(Az)d*A = J f(Az)x 2 (A)dA. (11.2.1)
AEF

The normalized principal series 7, is realized in the space of functions ®: R — C that
transform on the left by means of the character

o o e =x(5) 2

1
(¢ z
a .

This coincides with the definition given in in terms of functions on the punctured
plane. Indeed, given @ as above, pull it back to F> — {0} by means of (x,y) + gy, where
gxy is any matrix with bottom row (x,y) and determinant equal to 1, and then extend it to
F2 by 0. The result f is independent of choice of gy, and satisfies f(A - z) = x*(A)|]AI7'f(z).

Now let us discuss how to rigidify this 7, that is, how to endow it with a self-duality
pairing. First, let us observe that on the space of (—2)-homogeneous functions on F?
there is an action of R whose pullback to GL; is g: f(z) — f(zg)|det g|, and an invariant
functional given by integrating f on P} (see [§ 2.4). Composing this with the product
of two functions gives an invariant pairing 7, ® m,1 — C, which we denote simply by
(f,g) — [pi fg.

For z,z, € F2, we denote by z; Az, € F the determinant of the 2 x 2 matrix whose rows
are respectively z; and z,. Now put

X 2(z1 N\ z2)

K(Z’1)ZZ) = |Z‘| /\Zz|
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and note that K(z;,z,) = K(z2,z;). Then for f € 7, the function

1)) = | K21z

defines an element of 7, -1 and the rule f — I(f) intertwines 7, with 7, 1. We also denote
[ by I, when we need to be explicit (note that I, and L, -1 are not inverse to each other).
The rule

(ffe) = | L) =] Ko z)fila)f(z)

defines (at least for generic x) a rigidification of 7,

11.3. The bilinear pairing on principal series. Continue with notation as above. We
have defined a rigidification of 7, and 7t,-1. There is, up to sign, a unique isomorphism
between these that preserves rigification, that we shall call the rigidified isomorphism;
it is the essential uniqueness of the rigidified isomorphisms that make rigidifications so
useful!

We can then transport the rigidification, either on 7, or on 7, -1, by means of a rigidified
isomorphism in one factor, and get (up to sign) the same pairing

Ty X M1 — C, (11.3.1)

which we will call the “normalized” pairing, and which we shall compute to be

(, 9) — VAT, x 2 j

fg.
1

Denote by 8§(F?) the Schwartz space on F?, namely the space of smooth rapidly decreas-
ing functions if F is archimedean, or locally constant functions with compact support if F
is nonarchimedean. We normalize the Fourier transform ¥, on F? by means of

?2@(21) = J W(Z1 /\Zz)CD(Zz). (1132)

ZzEFZ
Note that since we use a skew-symmetric pairing inside ¥ instead of a symmetric one, one
has 3 = id without also negating z (cf.|§ 2.3).

Lemma 11.3.1 (Intertwiner versus Fourier transform). The following diagram commutes:

F2

S(F?) —=— §(P)

foxl lfoXq
v(1,x3) 'y

Ty —————— T
Moreover, 1,11, is the same as multiplication by y(1,x*)y(1,x2).

Proof. We compute

L (fy)(z) = J X 2(NF(AZ')x 2 (z A z')dz'dA
AEF,z’cP!

J o, y)x2 (2 A (%, y))dxdy.
(x,y)€EF?
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On the other hand, we also have
Fa(f)y1(z) = J X>(MW(Az A Z)f(z')dz'dN = v(1,x%) 'L (fy)(2),
AEF,z'€F2

where we first carried out A-integral to give y(1,x%) ™ 'x;%(z/\z). Here we used from (2.2.5)
the fact that the Fourier transform of a character x, considered as a function on the additive
group, is (x(—1)y(1,x)x1) " (and that x*(—1) = 1). This proves the commutativity of the

diagram.
Moreover, applying the above equation with x replaced by x ' and f by &, (f) we get
F3(0x =v(,x ) L (Fa(f)n) =v(L,x ) v (LX) L I(fy),  (11.3.3)
from which we obtain the second claim. |

Lemma 11.3.2. A rigidified isomorphism

Tty M1 — m X7y

1

is given by y(1, XZ)_%YU X %) 2 (id®L,—1). Correspondingly, a normalized pairing on 7, X7, -
(as in (11.3.1) is given by

(f,9)— VATxn(x 7| fo
P
Proof. Use v, v’ to denote for vectors in 7r, and w, w’ for vectors in 7, 1. Now, integration

against the kernel K(x,y) above, or its analogue for x ', give respectively

Ly 1y — 7Ty,

Ixfl : T[Xq — Tly.

The self-duality structures are given by [, v- I, (v') on 7, and similarly [, w-I,-1(w’)
on 7, 1. Consider now

id® L om My  — m, Koy

VW v L1(w).

Transporting back the self-duality form [, vy - I, (v]) X [ v2 - Iy (v3) on the right hand
side, we get on the left the self-duality form

J v L, (v') x J L (w) - LI (w)
pl

P

(11.3.3) _

BB v | 1ebw) w1 )
P p

Since K is symmetric in its two arguments, L, -1 is adjoint to I, with respect to the pairing

Jp1, and so we can rewrite the above as y(1, x%)y(1,x ?) multiplied by the standard self-

duaity pairing on 7t, X7, 1. The first claim follows, and the second claim is a consequence

of the first. [
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11.4. Normalizing the trilinear functional. Now fix three characters x1, %2, X3 with cor-
responding principal series representations 7t,,, and write H’ for the diagonal copy of R
inside G’ = R3. Put

/_
M =m,, X, Xm,,.

We also let 123 = X1X2X3-

We rigidify each 7t,, and so also TT" according to the discussion above. Our interest
here will be to compute the normalized (in the sense of (3.4.3)) H’-invariant functional on
the space of TT. The open orbit of H' on (P')? is the locus O where the three points are
distinct, which we denote by [x;,y;] for j = 1,2,3. We fix a basepoint po € O and a lift
Po € (F?)3; for concreteness we take po = (0, 1, 00) and

Po = ((031)) (])])> U)O)) S (F2)3.

The H'-invariant measure is induced by the 3-form on (P')? whose pullback to (F>—{0})?
is
dp = [T (xydyy — vy . (11.4.1)
(x1Yy2 —x2Y1) (x2Y3 — x3Y2) (X3Yy1 — x1Y3)
The choice of order in the product does not matter, because the measure induced by a
differential form does not depend on sign. It is easily seen that this formula is independent
of the choices of x; and y;, and is invariant under H’. We transport this measure to H' by
means of h € H' = poh. The resulting measure d"h is independent of the choice of po.
We remind the reader that if F is nonarchimedean, this measure assigns H'(0) = R(O)
volume 1 — g2, hence differs from the normalized Haar measure (cf. . Evidently,
the following form on IT’ is H'-invariant:

T(f; Xy, K f3) = J (hf; X hf, K hfs)(Po)d"h = J P(h)f(poh)d™h, (11.4.2)

! !/

where we choose some h € GL; lifting h, and ¥ = (x;5;/-1*/?) o det.
Lemma 11.4.1. With the choice of P, above, we have
o _ b,

where T°™ is the “normalized” trilinear functional on TI' defined via T"°™ (v;)T"°"™(v,) =
Jrerw (hvi,v2)dh, and

3
_ 1 1 1 1
a=vp' [[v(,x7) -Y(TXm)Y<§>X123>Y<§»X123>Y(§»X123>-
i=1
where we use the shorthand X153 for x1X5 ' X3 |, and so on, and vp is defined by (3.2.3).

Proof. First, note that

53 (X2 — X3) X193 (X3 — X1) X752 (X1 —
() :J f1(X1,1)fz(Xz,])f3(X3,1)X123( 2 —X3)X723(X3 — X1)X723( 1l XZ)dx1dxde3.
F3 l(x2 —x3)(x3 —%x1)(x1 —x2)|2
(11.4.3)
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To see this we set

= X3b b
h= [X] 4 d} (11.4.4)
with b = (x; —x2) and d = (x, — x3). Note that h maps po to (x1,x2,x3); in fact,

Poh = ((x2 —x3)[x1, 1], —(x3 — x1) [x2, 1], (x1 — %2) [x3, 1]) € (P')>.

Note also that deth = (x, —x3)(x3 —x1)(x1 —X2). Using these coordinates for hin (11.4.2),
the claim follows.
Now, take f € TT"and g € T’ = T W o K Then we have

t(f)t(g) = Jh . ¥ ()P’ (ho)f(Pohi)g(Poha)d"hid™hy (11.4.5)
1,hoeH’
_ J (xF) (PoFia)g(Pofia)det(a) PdPxd®hy,
x,heH’

where we substituted x = h; 'Thy, ¥ = (x755]-1¥/?) o det and ¥’ = (x123/-13/?) o det. The
product ¢ = (xf) - g is a function of homogeneous degree —2 and for such a function we
have

J d(Poh)|det(h)Pd"h = J ¢. (11.4.6)
H (P1)3
To check we express both as integrals over F°. The right hand side equals
J"Fg x1,xz,x3)dx1dxzdx3 by (2.4.I). On the left hand side, we parametrize elements
h by means of (x1,%2,%3) as in (IT.44). The function poh +— ¢(poh)ldet(h)|?, considered
as a function on the orbit O, therefore assigns to (x1,x2,x3) € F* C P'(F)? the value
Ad(x1,x2,%x3), where A = [(x, —x3)(x3 — x1)(x1 — X2 )|, and therefore its integral against
the measure A~'dx;dx,dx; (cf. (11.4.1)) coincides with the right hand side of (11.4.6).
That concludes the proof of (11.4.6).

Combining with we find that t(f)t(g) coincides with the integral of the
pairing

J dpr (xf)-g= VPJ de (xf) - g.
x€H’ (P1)3 x€eH’ (P1)3

Now, recall that the normalized pairing on 7, is defined by (f, g) = [, f-1(g); we therefore
obtain for f, g € TI’ the equality

m(Eeen(g) = | dx| | xf1(9) =x(ellg)

where I now connotes the product of intertwining operators in each of the three tensor
variables. It remains now to verify that

t(I(g)) = at(g).
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To prove this, we may suppose that g = X;®; ,, for some ®; € C*(F?) (cf. (11.2.1)), and
then from (11.4.3)

(g) = (z2 N\ z3)Xi23(23 A\ 21)X523(21 /\Zz).

(22 A z3)(z3 A z1)(z1 A zo)|2

X133
J D@1 (21) D (22)D3(z3) 22
(z1,z2,2z3)€(F?)3

Using|Lemma 11.3.1} we have
<(1(g)) = [T v(1,x2)

)X123(Zz N z3)X123(23 N\ z1)X123(21 A\ 22)
(22 A z3)(z3 A z1) (1 A z2)[2

)

XJ ?2(@]&@2&@3
(z1,22,23)
(11.4.7)

where we still use F, to denote the Fourier transform on (F?)? induced by 5 in (11.3.2).
For ® € C®((F?)?) and a tempered distribution x on (F?)3, adjointness of the Fourier
transform gives

J <D->‘<=J F2(0) - T20x),
(F2)3 (]:2)3

where ¥ means the complex conjugation.

For additive character ¥, ¥(x) = ¥(x)~! = ¥(—x), we have then F,(%)(y) = F>(x)(—y).
As aresult, (11.4.7) is equal to

HYU)X%)J Q1(21)P2(22)P3(z3) - F2(x) (—21, —22, —23),

i (z1,22,23)€(F?)3

where ¥ is the distribution given by
Xi23(22 A z3)X133(23 A\ z1)X123(21 A 22)
(22 A z3)(z3 Az1)(z1 Azo)lz
The result then follows from [Lemma 11.4.2|below. [ |

(ZUZ’Z>Z3) —

Lemma 11.4.2. Let oy, &2, &3 be characters of F* and o123 = oty xa003. Then the distribution on
(F2)3 given by o (z2 A\ z3) oz (z3 A\ z1) a3 (z1 A\ z2) has Fourier transform

. 1 gz Az)ag (23 Az )og (21 A za)
(v(1, 23 I)HY(LOM) X oy et

Proof. We will proceed formally, leaving the routine analysis details of dealing with dis-
tributions (in contrast to functions) to the reader. The basic strategy is simply to carry
out the Fourier transform first in the z; variable, then z,, then z3; each of these will be
straightforward after a change of coordinates.
Write z; = (xi,yi) and dz; = dx; /\ dy;. Using the equalities
((Zz /\Zg)dZ]) AN de AN ng = (d(Zz AN Z1 ) AN d(Zg /\Z1 )) AN de YA\ ng,
(i Nz3)zo — (21 Nz2)z3

‘I —_
Zz/\Zg, ’
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we carry out the first change of coordinates, fixing z, and z3 but replacing z; b
y g g p g y
Z; - (X;»y1)> Xé =2z /\21»94 =3 Nzy.

Perform Fourier transformation with respect to z; with k; being the dual coordinate of
z1, in other words, we compute the integral

J Z‘P(k1 Nzy)og(za AN zz)axa(zz A zy)as(zi A zy)dz;
F

k] /\Zz k] /\Z3 ng
_ ' ! / A / !
JFZ (zz/\23( 1 +Zz/\23x1)0¢1(22 23)062(91)063( X1)|Zz/\23|
o (za A z3) ki Nzp o I\ A ki Azs I\ A
= LAzl J'qu<zz/\23 (—y1)>ocz(y1)dy1 LW<22/\23X1>0‘3(_X1)61X1

X1 (ZzAZg) k] /\Zg k] /\Zz
— e e
%23(—1) |zo /\ 23] e <zz/\z3>5t(a2)<zz/\23>

2.2.5) —1
(y(

Too)v(1,03)) g, (ke Azs)oag,_q (ki Aza)xaosi(za Azs),

where we use a semicolon to separate the indexing subscripts (1, 2,3, 123, etc.) from the
twisting subscripts (£1).
Similarly, we write
(z2 A zz)ki — (22 A ki)zs
k1 AN Z3 ’

Zy =
and transform with respect to z,. We get

J i W(ka Aza)os, 1 (k1 Azz)o, g (ke Aza)orzsa(z2 A zz)dza
F

x3, 1 (k] AN Z3)

. kz/\k1 ) kz/\Zg
n ’k]/\23| 3‘(0”23;1)<k1/\23> ( 2_])<k1/\23>

= oq3(—=1) (v(1, %1232 )v(1, &z, 4 ))71 o733, 2 (ko Aky)oa (ko A zz)og (ke Azs).

Finally, we now write

(zz3 Aka)ki — (z3 N ky)ka
k1 ANka ’

Z3 =
and transform with respect to z3. We get

J ZWU% Nz3)xis3, 5(ka Aky)aa(ka Azz)o (ki Azs)
F

x733, 2(k2 Akq) k3 Ak ks Ak
ki A | ( 2)<k1/\k2)5(°“)<k]/\k2>

= o3 (—1) (v(1, a2y (1, &1 ))_] o, 1 (ks Aky)og q(ks Akz)as, 4 (ki Akz)
= x123(—1) (v(1, 02)y(1, 09 ))71 o (ka2 Aks)os, q(ks Aki)as, g (ki Aka).

= o (—1)
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Combining three steps together, the Fourier transform on (F?)* of the distribution
o (z2 AN z3)og(z3 AN zy)az(z1 /A zy) is then

061;_1 (kz A\ k3)0(2;_1 (k3 AN k] )063;_] (k] A\ kz)

times
-1
oo (=1 (v(T, )y (1, 03) v (1, %1231 )Y (T, 0z, 1 )y (T, aa )y (1, )
Notice that y(1,x)y(1, x5, 1) = x2(—1), and so we see that the Fourier transform of
o (z2 AN z3)xa(zz A zy)oas(z1 /\ z3) is precisely

(v(1, ot123,1) HYU) 061))7] og, q(ka Akz)os, q(ks Aki)eas, (ki Akz),

as desired. [

11.5. Definition of $°, AP and ¢, A". We now follow the notation of and the
reader may find the outline there helpful before reading this and the next subsections.

We define the naive functional ¢ on TT so that its value on the vector f = ®i4ifij is
given by the formula:

P (f) = HJ fij(zyy) fji(zi5)dzyy,
ijeg /P (F)

where zi; = (x4, Yi;) is any representative of the homogeneous coordinate [x;;, yi;] on PT,

and denote dzi; = x4;dyi; — yi3dxi; (note that this notation is different from the previous

section where dz = dx /A dy). By|Lemma 11.3.2lwe obtain the formula for the normalized

pairing AP:

AP =P TTv(1,x5)% (11.5.1)
ijeo
Next, we construct an H-invariant functional ¢!, annd relate it to the normalized
functional A". The H-orbits on B\G = (P')° can be described by looking at the triads
pointing outwards (or equivalently, inwards) from a given vertex. There is a unique open
dense R-orbit on the product of three copies of P' indexed by each triad; we denote this
open orbit corresponding to vertex i by O;. The Haar measure on R induces an invariant
measure on O;, which has been described in (11.4.1).
Fix a base point po = (pij)ijeo in [[; O1 C (P')°. and a lifting po = (pi;) € (A2)°. To
interface with the computation in|Lemma 11.4.1, we make our choices as follows:

]512 - ]521 - ]534 — ]543 = (0) 1))
]513 :f)fil :f)24 :f)42 = (1) ))
]514 = ]541 = ]523 = ]532 = (1)0)
In words, nonadjacent pair of edges (i.e., edges not sharing any vertex) regardless of

orientation (e.g. 12,21, 34, 43) are all assigned the same point; these points are 0, 1, co and
their “standard” lifts to F2.
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With this choice of po, we define ¢ as the product of the previously defined t-
functionals from (11.4.2)) on the various triads of representations; symbolically,

eM(f) = H JH fi;(P1;90)Wi(d1)d" g (11.5.2)

i

where i = (XijXikxit) "'l I*/2. By[Lemma 11.4.1, we have also

B | T 1 1
Al = VPZd)H X (H V“)Xizj) : H‘Y(E’Xi]’]XﬂJXu])‘Y(E»XinuJXu])

ijeo iev

1
2

v(%,xij‘xika )v(%,xiﬂxik‘xﬂ))

1

= v 2" x (H Y(,x3) -v(%,S)) . (115.3)

ijeo

11.6. Averaging. Again, the reader may refer to the outline in First, the H-average
of P, denoted by (¢')’, is given by

g

(") (f) = J [H J ijl_(gi)xfjl(gi)fij (z45G1)fji(24;G5) dZij] dlgil,
[gileER\H ijE€E P! -

B

where we have written x;; ' (§) as an abbreviation of Xij ! (det §); the function Py is (—2)-
homogeneous in coordinate z;;. In other words (¢'™)’ is the integral of the 15-form

[LTiee Pij - dzij [ Ticv dgi
dg ’

Wy = (11.6.1)

over the space
R\((P")E x H), (11.6.2)

where R acts on each P'-factor by h: [x,y] — [x,ylh~!, and where dg corresponds to the
Haar measure on the diagonal R.
On the other hand the integral (11.5.2) ¢™ can be rewritten as an integral of a 12-form

Wy = H Qij . :l_[d[pgiL = Vﬂi H Qij . Hd91 (1163)
ij€0 iev ij€0 iev

over H, where Q;; = fj; (ﬁijgi)x{jl(gi) and vp is as in (3.2.3).
To relate these, let us first relate more carefully the spaces over which we are integrating.
There is a natural map

A: (PHEXxH — (P9,

(Zij = Zjiy gi) — (Zijgi)-
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It is R-invariant where R is acting on (P')E x H as in (I1.6.2). We examine its restriction
over the open subset O = [ [; O;, and descend it to the quotient of the domain by R:

A: R\AT(0) — O ~ H,
where the final identification uses the orbit map for py, i.e., the inverse of h — poh. Then
A is submersive; (¢')’ is given by an integral over the domain of A, whereas ¢ is given
by an integral over its range:

(™) = ws and ¢ = J w3. (11.6.4)

J R\A-1(0) H
Note that the forms w;, w, are not quite algebraic because they involve the f;; that are

simply smooth functions. It is more convenient to relate them in a more algebraic version;

Lemma 11.6.1. Define
Q=vp* H dzyj - H Xij— ((zi5 A za) (za A zgy) (zae Aza) ),

{j€E ijeo
which we consider as a differential 6-form on (P')E, where
(1) In the product over ij € V, we always require {i,j, k, l} =V, and the ordering of k and L is
opposite for any pair of xi; and X;i;
(2) we choose for ij € E coordinates (xij,Y;) in (A%)E with zi; the corresponding points in
(PYE, and write

Xij  Yij

Zij A\ Zik —
Xik Yik

y - dzy = xi5dyy — yidxgy.

Then we have an equality of differential (regular) 18-forms on A=1(0):
@7 = A* (w3 A0,

where (I)?lg is the numerator of (11.6.1)), but replacing the fi; by an algebraic function fﬂg defined
on a Zariski-open subset, with the same degree of homogeneity, and making the same substitution

in the definition of w3®.

11.7. Conclusion of the proof, assuming [Lemma 11.6.1, From the lemma we readily

for any choice whatsoever of f;;. (Just integrate both sides of the lemma, but after multi-

plying by the ratio fi;/ If?;gl.) Taking f; to be supported in a very small neighbourhood of
p, and using (11.6.4), we deduce that

(") = (¢™) x (J Q(po)).
A~ (po)

If we combine this with[Lemma 11.6.1} we find that (¢')’ equals ¢ multiplied by the
normalization factor:
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Hij er 4z

V4J Xij— ((zi; A zi) (zu A zis) (zie A zig) ™! ;
P :R\([F"‘JEH j ( j k L j k 1 ) dg

ijeo

with the ordering convention for k and 1 as stated in|Lemma 11.6.1, Combining this with
the known relationships (11.5.1) and (11.5.3) between A" AP and ¢, $P completes the
proof of [Proposition 6.3.1, hence also[Theorem 7.2.1

11.8. The proof of Lemma 11.6.1, Working Zariski locally on P! we fix algebraic choices
of homogeneous coordinate representatives z — Z and similarly working locally on PGL,
we choose representatives g — §in GL,. Define functions A; Zariski-locally on (P')E x H
by requiring

AijziiGi = Pijy  Njizij G5 = P (11.8.1)
In view of (11.6.1) and (11.6.3) what we must prove is

HXSL(QJ‘U) = H Xij— ((zij A zie) (za A zij) (zik Azi) )

jEE ijeo

Writing

the condition (11.8.1) then amounts to

AM2(X12,Y12)  Ms(X13,Y13)  A1a(X1g, Y1a)

A21(X12, Y12) A23(X23,Y2s)  Aza(X24,Y24)
7\31(X13,913) )\32(7(23»923) 7\34(%34,1434)
Aa1(X14yY1a) Aa2(X24yY2a) Asz(X34,Ysa)
(c1,d1) (a1 +cq, b1+ dy) (ai, bq)
_ (c2, d2) (az, b2) (az + ¢z, b2 + d2)
(as + c3, bz + d3) (as, bs) (c3,d3)
(ag, by) (ag + c4y bg + dg) (C4y d4)
Observe that
o X X X
detd; ' =AM | 92 Nahaa | IS = A [ 9
X13 Y13 X14 Y1a X12 Y12
X12 912’ ’Xm Y14
5 1X13 Yi3| [X12 Y12
- 7\12 )
X13 Y13

X14 Yua



62 AKSHAY VENKATESH AND X. GRIFFIN WANG

and so we have

—1
1|)12(§1)Xf22(7\12)’7\12’ :1|)fz] ([Xu 9121 {Xm 914} [XIS y13:| >

X13 Yi3| [X12 Y12 [X14 Yua

Similarly, for any i # j, if we let k, | be the remaining two vertices, and let €;j; be the sign
of the permutation that sends (1, 2, 3,4) to (i,j, k, 1), then we have

—1
2O | — e (en =t (X0 YU ] [ va [xae Yk
ll)l)(gl)XU (7\1))|7\1)| Xl](eljkl)ll)l] (|:Xik Uik:| |:Xij Uij:| |:X1'_1 Uil:| >)

where for any i > j we let x5 = %;i, and so on. This expression is independent of
the ordering of k and 1, as expected. Note that we always have x;; (ei)-kl)z =1, and so
Xij (€ijx1)X51(€j11x) = 1. This concludes the proof.

12. WEYL SYMMETRY: PROOF OF [[HEOREM 5.1.T

We will prove [Theorem 5.1.1) namely, that the tetrahedral symbol for principal series
has a W(Dg)-symmetry, up to an explicit cocycle.

12.1. A Fourier duality. We continue with the notation of [§ 7.1|but now specialize to the
casen = 2k, i.e. Xis one-half the dimension of its ambient space. Let X+ be the orthogonal
complement to X inside F™ with respect to the usual pairing. We choose Haar measures
dx on X and dy on Xt so that dxdy = (du)™, and dx and dy are Fourier transforms of
each other. Recall from thatx = (x(—1)v(1,x)x1) ! is the Fourier transform of any
quasi-character x with respect to ¥ and dp.

Proposition 12.1.1. Suppose n = 2Kk, all the characters x; have the form o '|- =2 with the «;
unitary, and the integrals of lef% = [T, Ixilf% (where x; are the standard coordinates on F™)
over both PX and PX* are convergent. Then we have the following Fourier duality

XL
where [y X is, as in (7.1.1)), the integral of [, X; over the projectivation of X-.

Proof. Let ® be a Schwartz function on F". Let T be the torus (F*)™ which we understand
to act on F™ in the obvious way. We equip T with the Haar measure [ [, du(t;)/[t;| and
for t € T we write

=] ity at) =] oulto)
i=1

We extend them by zero to functions on F™.

Let T" C T be any complement to the central scaling copy of F*, e.g. we can take T’ to
be the copy of (F*)™~! which scales the first n — 1 coordintaes. The Haar measure on T’
is such that its product with dp/|-| on the central copy of F* is the Haar measure on T
above.
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We first prove that we have an equality of absolutely convergent integrals:

Jx(x, @) ::J

a(t)[t2 @ (tx) = J
T'xX

o ()X J x(VIM D W),
PX

with the measures specified above.

We first note that the two integrals on the right are absolutely convergent, the first by
assumption, and the second because it is bounded by a product of one-variable integrals
of the general form [ QIaI_%da for a compact set ). To verify that the integral on the left
is absolutely convergent, it is sufficient to verify that, for positive @, the iterated integral

LJ /Itl%d)(tx) < 0.

We can rewrite this as (iterated integrals)

L»x Lgx J ,'tﬁ’?\l%@(?\tx) - LX thﬁ@(tx).

The inner integral is, by what we already noted, finite as long as x lies on no coordinate
hyperplane, and its value is equal to a constant multiple of [x|~?; and by assumption
IPXIXI*% < 00. So the left hand integral, too, is absolutely convergent.

Since the integral J (o, @) is absolutely convergent, it can be evaluted in whatever order
we please, and we may now compute:

(o, @) = | oc(t)m%J O (tx)dx
JT/ X

_ | oc(t)|t|1j d(t"y)dy

JT/ Xt

M OLL j & (ty)dy
JT/ Xt

- ]Xl((x_1 ) (D)a

where, at the third step, we inverted t, and at the first stage, we used Fourier duality on
F™ for the Schwartz function @ and the distribution dx/|t|:

Ld)(tx)dx:J @ (x) dX—Llé(y)-ltldyzj d(t 'y)dy.

X ‘t’ B XL

That is to say, we have proved that
[, aoamt | aminitow
PX n

is symmetric under replacement of X by X*, ® by ® and « by «~'. Combined with
another Fourier duality from

N[—=
(S

(v),

n

|| stmt o) = | sl Himdm Byl H | ot mibl

Fn



64 AKSHAY VENKATESH AND X. GRIFFIN WANG

we have

Y(1, -4 j W =TT (= j ()2,
PX H PXL

which translates to the desired equality. |

12.2. The Weyl symmetry. Inorder to explain the indexing of characters here, we combine

(4.3.1) and (7.2.3) in the following diagram:

where we label each edge with both a blackboard bold number and a coordinate that is
consistent with [Theorem 7.2.1} which we proved in

We express {IT} in terms of the hypergeometric integral (7.2.T). Let us first recall some
abbreviations that we will use. We shall use the following type of abbreviation (given by

an example; cf.|§ 4.4):

1 1 1
X231 = X12X13] X14]> Y31 =Y (za )(12)(131 X14] > .

We further abridge the special cases when there are one or two inverted characters:

XijXik o Xil
2UAKand  gli= X = ———,
Xil XijXik

X1 = Xjkl =
and by extension
L. 1T 1
Yi =Y = Y(E»Xi)'

The convergence claim of [Proposition 6.3.1| (proved in [§ 10.2) then allows us to apply
IProposition 12.1.1|to (7.2.1), and we arrive at

1 —1
{m} v( S ) =vp' [Vivivivivivivivi)

x J B (R DF_WIR_ (W —IF (x — By — 2% (2 — W),
[ Y,z W}E[PB(F)

(12.2.1)
where we used (2.2.5)
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and that

(axadx) (=1) = (axaxaxi) (=1) = 1.

The new integral in may be interpreted as the integral with a different set
of xij, the latter obtained by performing what we will call an inv-Regge symmetry through
the pair of opposite edges 2 and 5. (for discussion, see it relates to the usual Regge
symmetry by composition with inversion of each character). The said transformation may
formally be written as follows:

ﬂ|—>ﬂ/:ﬂ+3;4+6) 2|—>2/:ZQ)

3H3,__ﬁ+3+21+6 4H4,__1T+C76+4+6
= 5 , = 5 ,

5—~5 =35, 6H6/::ﬂ+3;4+6,

where 1 means formally negating 1 and so on. Thus, for example, the new character X
associated to oriented edge 12 after the transformation satisfies the relation

X]%/ =X1Xz 1XZ ]XE "= X12X41X43X32

and similarly for other edges. This does not uniquely determine ;- and so on: indeed,
the character appearing on the right need not even have a square root. However, this is
not an issue: it is simply a reflection of the fact that the map is not surjective; rather,
this transformation does determine the (new) integrand in (7.2.1). For example, the first
character x3_ in the integrand is the same as

I =1y -3
Xise— = X1 XsXe |72,
and after the inv-Regge symmetry, we have

BT | -
Xi56'— = X3X4Xs5 1| 1T =X = Xif'
Thus, the new edge integral after inv-Regge symmetry is the integral in the expression:

E(PLW') = vp Jf(ﬁ_(x —Y)Xi-(y — 2K (z — W)X (w — )% (X)Xa- (Y)R5- (2)K3- (W)

which is easily seen equal to the integral in by exchanging x with z (and using
the fact that X353%3%3(—1) = 1).

Let {IT’} be the tetrahedral symbol associated with the new set of characters after per-
forming the said inv-Regge symmetry, and (3, (S7)’) be the corresponding y-factor (see

§ 5.1). Then we have by (6.3.1)

Iy (5 (57)) = v EEL ).
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Therefore, we showed that

—1
vavivivivivivivil \/v(5,(87))
{TT} ={TT"} x . (12.2.2)
¥(3,57)
Proposition 12.2.1. We have an equality up to sign:
{Tmy ={1T"}.

Proof. It amounts to showing that the fraction on the right-hand side of (12.2.2) equals £1.
Indeed, by definition,

1
Y <§) S ) = Y231Y331Y234Y351 X Y131 Y134Y134Y 132
X Y135Y12aY124Y123 X Y123Y123Y123 Y123y

whereas after the inv-Regge symmetry we find

T
Y <§, (S )') = Y233 Y124 Y234 Y134 X Yi35Y123Y131 Y134
X Y122Y234Y235Y123 X Y123Y134Y123Y133-

As a result, we have (up to sign)

Y( %> (S7)) _ \/ Y233 Y234 Y334 Y134 Y134 Yi23 Y133 Y123
Y(3,S7) Y334 Y331 Y231 Yi3d Yi2d Y123 Yi23 Yizs

= Y231Y234Y334Y134Y134Y123Y133Y 123

= YIViYivaY3VaYive,

where we again used the symmetry properties (2.2.6) of the y-factor; and the fact that
(exaxsxaxaxaxixa) (—1) = 1.
This finishes the proof. |

12.3. The proof of W(D;)-symmetry, completed.

Proof of| Let us begin with the first claim (1), that {x}* descends to D¢ ® FX
and is W(Dg)-invariant. Formula shows that {x}* depends only on characters of the
form xiijxiikxﬁ, which gives the descent. In the language of @ {x)? is evidently invariant
both by the group of orientation reversals (since these do not change the isomorphism
class of the underlying representation) and also by the group of tetrahedral symmetries
(by the way we defined it). Finally, [Proposition 12.2.1| shows that {x} is invariant by at
least one Regge symmetry; together with the prior groups, this generates all of W(Dg).
This concludes the proof of the first claim.

We now pass to claim (2). By we may take I(x) to be the integral IE(P}, ),

multiplied by v5?. Then a(w, V) = I(w~'x)/I(x) is automatically a cocycle of W(Dy)
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valued in functions of 1. By what we have already proved, namely, that {x}* is W(De)-
invariant, the validity of for some choice of signs t(w,x) follows; it remains to
describe the signs.

Since a is a cocycle, it suffices to compute t on the generators of W. By
it suffices to consider J, T and a single element in 3. Some of them are easy: the V-
tetrahedral group T preserves ST and S, and evidently also I¥(P], V), so they have trivial
signs; by (12.2.1), the one particular inv-Regge symmetry in [Proposition 12.2.1| also has
trivial sign.

We then compute the sign for w being the edge flipping operations, and it suffices to
assume that the edge is 12, and that all x;; are unitary. We will need to use the results
from [§§ 14.3| and [14.6| (Whose argument is purely analytic based on the integral formula
and independent ofTheorem 5.1.1). In short, may be written as f(1) for some

smooth function f on F whose Mellin transform (as a function on F*) is

1 Y(A®AL)
YA®B)’

A— [YOa)v03 v a )63, )]
where

A = {X12X31X4a1, X21X41X31, X43X31X23) X34X31X23)

B = {X§1aX42X41X31X23)X41X31X24X23> 1 }

It is clear that exchanging 12 with 21 only changes the constant factor [y(x}. )v(x3. )] !

in the Mellin transform into [v((x3_)"")v((x3_)")] ~'. Therefore, we have

Iw ') v(x‘h)v(x%) (12.3.1)
100 v(6G))v(6a))
= xi(=1)x3(=1)y (xl+)v(x 2 Y0 )y (G
= (xasxaaXasXas) (=) Y (X1 )Y 063 )Y 03 )Y (X34 )-
This shows that the sign for flipping the edge 12 is (X13X14X23X24) (—1).
Let si; be the element flipping edge ij. We show here that

L(Sijsiksil)X) = L(Sijsjkski>X) = XijXikXit(—=1) = Xjkl(_])» (12.3.2)

where {i,j,k, 1} = V. Then implies that
I(s5 s5;'x)

T XixXit 1 thXu T XkiXkl 1 XkiXkj
2, Xl_]1 ) < Xil ) (2) Xk) > <2) Xkl >
= (Xi)'Xuijth)(—1)V(Xjk1+) (X]k1+)Y(XUl+) (X1)1+)

I(SG]X) :(XQXuijXkL)(—]) (

And one can compute other quotients I(s;;'s7,'s y %)/1(sg U x) and so on. On the other
hand, the weights in S* N s;j5i18:1(S™) are precisely

Xijlo Xijky  Xikb Xikly  Xiju Xiily  Xjkb Xk Xjkts Xjki-

The claim (12.3.2) is then an easy (albeit a bit tedious) exercise.
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The longest element wo, which flips all edges simultaneously, can be written as the
product of sijsixsii and sjiskis1;. Repeating the same argument for these two elements,
we see that ((wp,x) = 1.

Lastly, the inv-Regge symmetry in [Proposition 12.2.1| is the element T25wo = WoTas.
Using the fact that ((wo,x) = 1and S*Nwy(S™) = S, we then can show that i(r5,x) = 1.
Conjugating using ¥, or more precisely by cyclically permuting {1, 2,3}, the same also
holds for ry4 and r36. This finishes the proof. [ |

13. COMPUTATIONS FOR UNRAMIFIED PRINCIPAL SERIES

In this section, we prove [Theorem 5.2.1| by direct computations, partially assisted by a
computer. Using|Proposition 6.2.1} the statement to be proved is as follows:

(1—q2)°1V(R/K, @)L(1,ad) = Tr(q~ 20, C[P]). (13.0.1)

Our proof breaks into several steps:

(1) We first compute IV(R/K, @) using the Bruhat-Tits tree of R = PGL,; as a sum of
terms, each of which is a product of several geometric series; see

(2) On the dual side, the representation C[P] of Spin,, decomposes in a very nice way
by using the Cartan map. Then the trace of q~Z¢ can be computed using Weyl

character formula, see|§ 13.2.4

At this point, we should be able to prove by direct comparison, since both sides
are algebraic expressions. However, the length of the expressions seems too large for our
computer to handle efficiently, and so we opt for a more indirect approach using analysis.
Regard both sides of as functions of on the six-dimensional torus D¢ ® T of possible
o. We shall then verify that:

(3) Both sides of (13.0.1) have at most simple poles along the locus where some eigen-
value of o acting on S equals q2. See |Proposition 13.1.5| and |§ 13.2.4l

(4) These poles have the same residues. See § 13.3|for the (computer-assisted) compu-
tation.

Therefore, the difference between the two sides defines a regular function on Dg @ T =~
G, To conclude it is constant, we use the following observations:

(5) If we restrict either the left-hand side or the right-hand side to a generic one-
parameter subgroup of the torus D¢ ® T they remain bounded at infinity. (See
I§ 13.1.3|and [§ 13.2.5).

Here “generic” means that the coordinates of the one-parameter subgroup is permitted
to avoid a finite set of hyperplanes. One readily verifies that a regular function on G}, that
remains bounded along a generic one-parameter subgroup is constant. So the difference
between the left-hand and right-hand sides must be constant. We can conclude by showing
that the desired equality holds at a single value of o.

Let us set up notation. In the statement of [Theorem 5.2.1, we have x € X, with image
o € Dg ® T; we denote by xi; = xij(@) the value of x;; at the uniformizer, so that the
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various xyj for i < j provide coordinates on D @ T. Let 0 € Dg @ T be as in the statement
of the theorem, whereas the image of o under the six standard coordinate functionals are

-1 -1 -1
X12X34y X12X34 y  X13X24, X13Xpq y  X14X23, X14Xp3

as well as their inverses.

13.1. The computation based on Bruhat-Tits tree. Recall that the quotient set R/K can
be naturally identified with the set of vertices of a tree, namely the Bruhat-Tits tree of
R. The K-orbits of those vertices, in other words, the double quotient K\RX/K, can be
identified with N: the identity coset K is sent to 0, and in general we send a double coset
to its distance from the orbit K.

With the notations in we note that the spherical vector v;; can be represented
by the eigenfunction of the adjacency matrix of the tree, with eigenvalue q 2 (xy; + x{j] ),
where x;; = xij(@) is the value of x;; at the uniformizer. Recall that for any x € C, the
corresponding Hecke eigenspace is generated by a function on N = K\R/K:

qx—xq 1 x—qxq 1

—54— 1M

T a—x 1) a0 * 0
where we, for now, naively normalize fy so that f,(0) = 1. Let f; = Ty

The space XV is simply the moduli space of 4 labeled vertices on the Bruhat-Tits tree,
and so R\XV may be identified with the subspace where the vertex 1 sits at the root (that
is, the trivial coset K). The function ¢j; is simply the value of f;; evaluated at the distance
between vertices i and j. Note that the opposite orientation of the edge ij (in other words,
using fj; instead of fi;) does not change ¢;;, because the formula above is invariant under
x ++ x~'. For definiteness we shall choose the orientations so that i < j, which is consistent
with other parts of this paper.

fx(n) = (q X))t +

13.1.1. The generic configuration patterns of 4 vertices on a tree (with 1 at the root) are,
as follows, put into three (not disjoint) classes A, B, C:

1 A 1 B 1 C
la la la
zb/ AN Bb/ AN 4b/ N
RN AN RN
3 4 2 4 2 3
(13.1.1)

where any “line” above signifies a connecting path rather than just an edge of the tree,
and the letters a through e are the lengths of the paths. Any of these numbers can be 0; in
particular when ¢ = 0, the three classes coincide, and in this case we will use extra care.

Given any pattern as in (13.1.1), say in class A, with fixed qa, ..., e, then its contribution
towards the vertex integral IV (X, @) is given by

f12(0+ b)f13((l +c+ d)f14((l +c+ e)f23(b +c+ d)fz4(b +c+ e)f34(d+ e)
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# Zero conditions Cabede

1 a=b=c=d=e=0 1

2 abcde # 0 (T+q N(1—q")?

3 c=0,abde #0 1+q H(1—-q H(1 -2 "
4] ab=0,de£0,a+b+c#0 (T+q(0—q")
5/ab£0,de=0,c+d+e£0 (T+q "N(1—q")

6 otherwise (1+q ")

TaBLE 1. Values of Capege

multiplied by the volume p of the subset of R\XV that gives this pattern. Note that we
put 1 at the root, which is the same as identifying R\XV with the double quotient K\X?,
where X3 is indexed by 2, 3,4, and K acts diagonally.

Since the volume of K is normalized to be 1, and since K acts transitively on the set of
all configurations in class A with the same pattern (that is, same numbers a,...,e), the
volume p is just the number of elements in this set of configurations. It is then easy to
see that p is of the order q**°"¢*4+¢ but with an additional factor C,pcq. depending on
whether any of a,..., e is 0 or not. For example, if none of the numbers are 0, then there
are (1+ q~')q*"° different choices to place 2, and then (1 — q~')q¢"4 choices to place 3,
and finally (1 —q~')q°® choices to place 4. In this case, Cqpcae = (1+q ") (1 —q~ )2 The
values of Cgpcqe are listed in[Table 1l

The classes B and C are treated similarly, but with the complication that when ¢ = 0,
they duplicate cases already considered for A. To eliminate such duplications, we let
Z. =1/3if c = 0 and 1 otherwise, and multiply everything in all three classes by Z..

13.1.2. Thus, IV(X, ¢) is equal to the series

Z |:f12(a + b)f13((l +c+ d)f14(a +c+ e)f23(b +c+ d)f24(b +c+ e)f34(d + e)
a,b,c,d,e

+ f13((1 + b)flz((l +c+ d)f14(a +c+ e)f23(b +c+ d)f34(b +c+ e)f24(d + e)
+f14(a+b)f13(a+c—|—d)f12(a+c—|—e)f34(b+c+d)f24(b+c—i—e)f23(d+e) qa+b+c+d+eCabcdeZC,

where q,...,erange in N.

13.1.3. Boundedness of the vertex integral. We now show that
(1—q )’ IY(R/K, @)L(1,ad)

remains bounded when o varies through a generic one-parameter torus.

Explicitly, let xi; = t™9 for ny; € Z; we will prove the boundedness as t — 0 so long
as all the ny; are nonzero. The factor L(1,ad) is, up to constants, a product of terms
(1 — g~ "t*2™i)~1. Such factors approach 1 as t — 0 if the exponent is positive, T — q~'
if it is zero, and zero if it is negative. Therefore, it suffices to prove the boundedness for
IV(R/K, @).
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The constants Cqpcqe and Z. are independent of x;; and for abcde # 0 they stay the
same constants respectively. It suffices to look at the summation

Z flz(a+b)f13(a+c—|-d)f14(a—|—c+e)

a,b,c,d,e

X fa3(b + ¢ + d)fas(b + ¢ + e)fsy(d + e)q@Toretdre
because the other two summands are similar. Each fi;(n) is the sum of two terms:
qxy — X3

9 (g Ixy)",
(1+ q)(xy —ij]) f )

Xij —qu]-1 1
(T4 q)(xy —Xf51)

where the coefficients in front of (q_%xij )™ and (q_%x{j1 )™ are uniformly bounded when

xij goes to 0 or co. Expanding the products of fi;s in the summation, we see that we only
need to bound the series

Z (qf%tnu)aer (qf%tn13)a+c+d(qf%tn14)a+c+e
a,b,c,d,e

% (q—%tnn)b+c+d(q—%tn24)b+c+e(q—%tn34)d+eqa+b+c+d+e

_ Z (q—%ta(n12+n13+nl4)) (q—%tb(n12+n23+nz4)) (q—CtC(n13+n14+ﬂ-z3+ﬂ-z4))
a,b,c,d,e
X (q—%td(n13+nzs+n34)) (q—gte(nl4+nz4+n34))
1 1 1

= X X
1— q*%tnlz-l-nls-!—nu 1— q*%tn1z+n23+n24 1 — q—]tn13+n14+n23+nz4

X 1 X 1 (13.1.2)

1 — q*%tn13+n23+n34 1— q*%tn14+n24+n34 )

Clearly when t — 0 or t — oo, the above series is a product of 1, 0, (1 — q~2
(1—q~")~", hence bounded.

)~ or

13.1.4. Poles of the vertex integral.

Proposition 13.1.5. The expression IV (R/K, ¢ )L(1, ad) viewed as a rational function in variables
Xij and q~ 2, has poles at hypersurfaces

1= e,
where V = {i,j, k, 1}, and nowhere else, that is to say, only poles at points where o has an eigenvalue
q% in the half-spin representationS® = S.

Proof. Since the summation is a sum of products of geometric series, we know it can only
have simple poles at the hypersurfaces defined by the denominators in (13.1.2), such as
1— q*%xlzxmxm, etc. We need to show that the residue vanishes along:

e zeroes of the factors involving 4 different x;;s, such as 1 — q "x13X14X23%24 = 0, as
well as
e zeroes of factors coming from L(1,ad),ie. 1+ q_%xjE 0.

ij =
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These are checked by routine computer computation (see remark below for some discus-
sion of why this is easier than just checking the original result directly). |

Remark 13.1.6. Although the computation cost is highly dependent on the algorithm and
implementation, it is reasonable to expect that the residues are significantly easier to
handle computationally, because the “length” of the symbolic expression, in a vague sense,
is at least expected to be between 1/16 to 1/24 of that of the full tetrahedral symbol: for
example, there are 2* = 16 casesin 1 — q~'x5xi,x5x5,, and 2% x 6 = 24 cases in 1+ q*%xii]..
On the other hand, the expression is mainly products of two-term polynomials, therefore
the time complexity of the computation can potentially grow exponentially with respect

to the length.

13.2. The dual side. On the dual side, we consider Spin,,, and one of its two half-spin
representations (the one relevant to us is the last fundamental representation of highest
weight @¢). We will now describe in more detail the the Lagrangian P in the half-spin
representation S defined by the pure spinors.

13.2.1. Indeed, equip C'? with the anti-diagonal bilinear form

12
Qlx,y) = ZX&hszh (13.2.1)
i=1

so that it decomposes into the direct sum of two maximal isotropic spaces
Cc'? = Vs @ V¢,

where Vi is the first six coordinates. The exterior algebra A*Vg is a module of the
Clifford algebra CI(C'%,Q) (the quotient of the tensor algebra of C'? by the relation
x®y+y®x = Q(x,y)). The action of CI(C'?,Q) is as follows: vectors in Vi act by
wedging, and vectors in V{ act by contracting. It is not hard to see (by fixing bases in V,
and V¢) that this induces an isomorphism of associative algebras

CI(C'2,Q) ~ End(A*Vg).

Since up to isomorphism /\*Vj is the unique simple module of End(/\* V), we see that as
an abstract C1(C'%, Q)-module this construction is independent of choice of the splitting
up to isomorphism. Consequently, the automorphisms of (C'?, Q) act projectively
upon it, and this actually lifts to a genuine action of Spin,, — this is the 64-dimensional
spin representation. The spin representation decomposes into two 32-dimensional half-
spin representations S¢ and $°%9, that is, the subspace of even- and odd- degree elements;
in the labeling of Bourbaki [Bou02, Plate IV] these are respectively the representations of
highest weight @¢ and @s.

13.2.2. The distinguished element
1eC=AN;

which we will denote by v, for better visibility, is annihilated by the subspace V¢ under
the Clifford action, and one readily verifies that this characterizes it up to scalars. From
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the uniqueness claim above, it follows that any Lagrangian (i.e., maximal Q-isotropic)
subspace of C'? annihilates a one-dimensional subspace in /\*V, under the Clifford action.
A pure spinor is any vector in /\*V belonging to such a line; thus vy is a pure spinor.

Clearly, pure spinors form a cone P.. Let P be the open subset of nonzero pure
spinors. Then the quotient of P} by scaling, i.e. the associated projective subvariety
of the projectivization of /\*Vg, is evidently identified with the space of all Lagrangian
subspaces of C'?, that is to say, the Lagrangian Grassmannian LGr(C'?) of C'?. This
Lagrangian Grassmanian splits into two orbits under SO, i.e.

LGr(C'?) =Lart [ JLar.

In fact, two isotropic subspaces A, B belong to the same orbit if and only if the dimension
of AN Bis even.
One gets, therefore, a corresponding decomposition

P, =P, UP_

of the cone of spinors into sub-cones that intersecgt precisely at the origin. In fact, one
readily verifies from the description above that P, is precisely the subcone of pure spinors
in S @ 0 ~ S¢ and P_ is the cone of pure spinors in 0 @ $°44 ~ $°dd. Indeed, using the
Spin,,-action, it is enough to verify this for a single point of P, and a single point of P_,
which one does by explicit computation.

Since we mostly care about the cone P, we denote it simply by P.

Lemma 13.2.3. The vector space C[P],, of degree n homogeneous functions on P is identified with
the irreducible representation of Spin,, of highest weight n@s.

Proof. Let P* be the nonzero elements of P. Since the origin has codimension > 2,
“Hartogs’s theorem” implies that any regular function on P* extends to a regular fnction
on P. Therefore it suffices to compute the regular function on P*. However, as we have
seen above, P* is the total space of a line bundle L over the flag variety LGr™ minus the zero
sectionm By the Borel-Weil theorem, sections of line bundles on flag varieties are highest
weight representations, with highest weight determined by the isotropy representation.
This shows that C[P],, is the highest weight representation of weight nv for some v. To
compute v it is easiest to note that C[P]; is by definition a quotient of the irreducible
representation S, and so is in fact S¢V; thus v is the highest weight of S¢. |

13.2.4. Poles of the trace on the spinor cone. [Lemma 13.2.3|permits us to compute the character
of C[P] by means of the Weyl character formula:

4 o° (—1)tw)gwie)
Tr(q 20,C[P]) = .
(q ) ) [Taoolo*—1) weZW 1— q—%o-w(a)f;)
Note that this function is W-invariant, and so none of the term 0% — 1 contributes to a
pole (because you can conjugate any given o away). Therefore, the poles are only given
by 1— q~20™(®s), We see that the hypersurfaces supporting those poles coincide with the

16The square has a nice description: L#(~2) is the pullback of the determinant bundle over LGr*.



74 AKSHAY VENKATESH AND X. GRIFFIN WANG

ones on the automorphic side. Moreover, just as in[Remark 13.1.6} it is easy to see that the
residues are significantly simpler expressions: there are 32 weights in S, so the symbolic
length of a residue is only 1/32 of the full trace.

13.2.5. We compute the behavior of the trace when o = t* for some coweight p. It suffices
to assume that p is dominant by W-invariance, and since it is enough to consider generic
directions, we assume that p is strictly dominant. Looking at each summand in the trace,
and we want to show that for any w € W, the limit of

1 tlp+w(p),w)
[Tooo(tloom) —1)

1 t{=ptwip),u)
T q‘lt(w("*’é)»uj - {Hmu = g Itov@elu

(13.2.2)

when t — 0 or co is bounded.
We first consider the case t — 0. In this case, we use the left-hand side of (13.2.2). Since
i is strictly dominant, then we have (t{®"* — 1) — —1 for any positive root «, and

tletwlehw) s 0 or 1,

because p+w(p) is a sum of positive roots. Lastly, the denominator 1— q_%t“"(a’d’”) goes
to either 1 or 1 — q~2 or oo, and so Tr(q 2o, C[P]) stays uniformly bounded when t — 0.
The case t — oo is similarly proved by using the right-hand side of (13.2.2).

13.3. Comparison using residues. We have now located the poles of both sides of (13.0.).
They are, as we have seen, located on the locus where an eigenvalue of o on S coincides
with q2. The corresponding residues, on either side, can be computed using a computer
as well — this computation is substantially smaller than computing the full expressions
— and it then turns out these residues can be explicitly factorized.

For example, we record the residue of both sides of when 1 — q 207 ® =
1— g2 (xa2xasx1a) ' = 0:

—L(1, ad)x§3x§4x§4 (sz - 1)(7(%3 - 1)(Xf4 — 1) (x12X13X24 — X34)

(X12X13X34 — X24) (X12X13 — X24X34) (X12X13X24X34 — 1) (X12X14X23 — X34)

(X12X14X34 — X23) (X12X14 — X23X34) (X12X14X23X34 — 1) (X13X14X23 — X24)
-1
(X13X14X24 — X23) (X13X14 — X23X24) (X13X14X23X24 — 1) y

in which we really meant to replace, for example, x1, by q_% (x13%14) ' (so that q_% is

not treated as a variable but a constant); however, replacing q_% by Xx12X13X14 makes the
expression look more symmetric.

This completes the proof, according to the general plan outlined at the start of the
section.

14. HYPERGEOMETRIC EVALUATIONS OF THE TETRAHEDRAL SYMBOL

Our goal here is to express the tetrahedral symbol in terms of generalized hypergeo-
metric functions, proving both |[Proposition 7.3.1jand the formulas given in




THE TETRAHEDRAL (OR 6j) SYMBOL 75

14.1. Classical hypergeometric functions and Mellin-Barnes integrals. For positive in-
tegers k < 1 and parameters a = (aj,...,a;) € C' and b = (by,...,bx) € C¥, the
generalized hypergeometric function of parameters a and b is the analytic continuation
of the series

0 1
Ary...,Q Hj:](a]’)nxn
Frla,b;x) =+F ‘x) = —
1Fe(a, b;x) 1k<b1,...,bk T;;H}iﬂbj)nm’

where (a),, is the rising factorial:
(a)o=1, (a)n=ala+1)---(a+n—1).

Classical 6j symbols (i.e., compact R and F = R) enjoy various interpretations at the
value at the singular point x = 1 of 4F3(a, b; x) for certain a and b; our goal is to describe
a similar result for the tetrahedral symbols for F = R.

Using Mellin transform and its inverse, one can rewrite Fy into an Mellin—Barnes type
integral (with some assumptions on the parameters):

Mar)---Tlay) (@ bix) = LJC“‘” Maj+s)---Tlag+s)

F(by) - T(b) " 7 2mi Jo_yo T(01 +5) -+ T(by + 5)
where the vertical line (¢ — ico, ¢ + ico) separates the poles of all I'(a; + s) from those
of F(—s)m One can readily generalize the notion of Mellin-Barnes integrals to any local
field because I'-functions are essentially the local L-factors over R (cf. [§ 2). Our procedure
will, in fact, be to first derive a Mellin-Barnes representation (in this generalized sense)
of the tetrahedral symbol in the principal series case, and then derive the various desired
consequences from it.

I'(—s)(—x)*ds,

14.2. Review on Mellin transforms. We review the properties of Mellin transforms over
an arbitrary local field.
Lemma 14.2.1. Suppose a,b > 0and a + b < 1, then we have equality
_ - y(a+b)
x| — [P Tdx = 20—
J F y(a)y(b)’

where the left-hand side is absolutely convergent.

Proof. Since a+b —2 < —1 (resp. a—1 > —1, resp. b — 1 > —1), the integral is absolutely
convergent near oo (resp. 0, 1). Thus the whole integral is absolutely convergent. For the
equality, we note that

b—1

J X* 1 —x/°Tdx - y(a+b)"] J NESUL —x|b1de [yl e (y)dy
F F F
z a—1 ‘1 B z

LR

:J Xy —x|“dxj W(y)dy,
F F

17We will not use this general fact here; in the case relevant to us, namely 4F;3, details are contained in
§ 14.4
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which is the Fourier transform of the convolution of [x|*~" and |x|’~". Here we used the
fact that 0 < a + b < 1 implies that the integral form of y(a + b)~' is also absolutely
convergent, hence we are free to use Fubini theorem to manipulate the integrals above.

Applying (2.2.7) again we arrive at
j XI% 1 = x*Tdx - y(a +b) " = y(a)y(b)
F
and this finishes the proof. |

Definition 14.2.2. For a function f on F*, we define its Mellin transform to be the integral

Me(w) :j mi)d

assuming the integral is absolutely convergent for all (unitary) characters p of F*. We
will allow ourselves to speak of the integral for quasi-characters by means of analytic
continuation, when applicable. When F = R, we denote M (s) := M¢(|-|°) and M (s) =
M¢(sgnl-[*). In the reverse direction, given a function f(x) on the character group FX, we
define its inverse Mellin transform as

;') = | flooxxid

where the measure dy is dual to d*x, which amounts to asking that this is indeed inverse
to the Mellin transform.

Lemma 14.2.3. Suppose that f is an L'-function on F* with the property that M¢(w) defines
an L'-function on the character group of F*. Then the inverse Mellin transform of My defines a
continuous function that agrees with f almost everywhere.

Proof. This is a standard fact of harmonic analysis. In the F = R case, using the fact that
R* = R., x {1} and change of variables, the lemma is a standard precise form of Fourier
inversion; see for example [SW71, Corollary 1.21]. The F = C case can be similarly derived
from the fact that C* = R- x S'. The nonarchimedean case is relatively easy to deduce
because continuous functions are locally constant. It can be proved by first verifying that
the inverse Mellin transform of M defines a continuous function, call it f;, and then
verifying that the pairings of f or f; with the characteristic function of any compact open
subset of F* coincide. We leave the details to the reader. |

For a nonempty open interval ] C R, and let L} be the functions on F* with the property
that fo|f(X)| - [x[°d*x < oo whenever o € ]. In practice, we will be interested in the
interval | = (0, %). Many statements can be reduced to the case when ] contains zero,
simply by multiplying f by a suitable power of |x|.

Lemma 14.2.4. For f € Lj, the Mellin transform Mg (1) is absolutely convergent for a character
wand any s whose real part belongs to J.

When we write M; for f € L], we will always regard it as a function on the set of quasi-
characters specified by this Lemma. Next, L] behaves well with respect to convolution:
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Lemma 14.2.5. If f1,f, € L], the multiplicative convolution

fly) = J i)y dx

is absolutely convergent for almost all y, and also defines an element of L}. Moreover, the Mellin
transforms are multiplicative: we have

M = Mp, M,

where, as noted above, we regard both sides as functions on quasi-characters s where the real part
of s lies in J.

We omit the straightforward proof.

Lemma 14.2.6. For two characters « and 3 of F*, the product «(x)p_ (1 —x) belongs to the space
Lg 0.1) defined in|Lemma 14.2.5| Its Mellin transform is given by
’2

_ v(oBips)
Matop- 00l =S v (B

valid for R(s) € (0, 1).

Proof. The proof of [Lemma 14.2.1] still works: the real part of the exponent of quasi-
character ot is between 0 and %, while that of 3, is %, and so the sum of two exponents
has real part between 0 and 1; this way the relevant integrals all converge absolutely. R

14.3. Hypergeometric functions over local fields. The edge integral we have described
in (7.2.1)), up to scaling by powers of vp, has the following alternative form by lettingw = 1
(see for how the measure is properly dealt with):

[= L3 o (x)oa (T—x)az_(x —ylog_(y—2z)as_(y)os_(2) o7 (2 — 1),

for certain characters «; : F* — C*, and the measure is the usual additive Haar measure
dxdydz, which we omit for simplicity. We will explain how to evaluate this integral in
terms of a generalized hypergeometric function. Note that we have already proven that
I is absolutely convergent, and thereby, by Fubini’s theorem, it can be evaluated as an
iterated integral, in any way we please.

Use the shorthand o1, = o7, etc., and rewrite the integral as

1= Ls x13——(x)oa— (1T =x)az_ (1 —y/x)oa—(1 — z/y)oas——(y)otg7——(z) 07— (1 — 1/2).

We are going to repeatedly apply Lemma 14.2.5 with the interval ] taken to be (0, 1).
First of all, we take f;(x) = a13(x)oz (1 —x) and f,(x) = «3_(1 — x); they both belong to
L; by [Lemma 14.2.6, and therefore their multiplicative convolution

fi123(y) = J o3——(x)oa— (T —x)oz— (1 —y/x)dx (= JF o (x)oz— (1 —X)ocs_(x—y)dX) :

‘F
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defines also a class in Lj. By[Lemma 14.2.5/and [Lemma 14.2.6/we have

Yloasooips)  v(osy )
Y(zps)v(xze) vus)ylos)

where we assume that the real part of s belongs to (0, ); we will continue to impose this
assumption below.

Multiplication by a unitary character of course preserves the property of belonging to
L;. Consequently, we can apply [Lemma 14.2.5to analyze the multiplicative convolution
f12345(2) of f123(y) - ous(y) and as—(1 —y). Then f,345 belongs to L} and its Mellin
transform is given by

Mf123(u8) —

Mf12345(p'5) = Mf]gg(Z)OC45(Z)(HS)MOM,“fZ)(uS)
_ Y(xX12345+ Hs) ) Y (3454 1) ) Y(oxXaypts)
Y(xi3asts ) Y(024)  Y(oasis)y(osy)  v(ws)y(osy)

Finally, multiplying f12345(z) by «s7(z) and then convolving with o;_(1 — z) gives, for
exactly the same reason as before, a function fy,345¢7(W) € L} such that

Mey550567 (Hs) = M3 w) aaser (w) (Fs ) Mg (w)oea (1—w) (s ) Mas (1)
. V(12345674 Hs) ) Y (34567 Hs) ) Y(Xa67+1s) ) Yo7 s)
 Yl{ozaserite) () Yiasere)v(xsy)  vi{xeris)v(oar) y(ps)y(ozy)’
which we rewrite as

—1Y(X1234567+ Hs )Y (03a567+ s )Y (Xa674 Hs )Y (0674 1s)
V(1345671 )Y (0tase7 s )Y (07 1s )Y ()

[v(o2 ) y(es ) y(oas ) y(ar)]

(14.3.1)
Note that f234567(w) is defined by replacing «;_(z — 1) by «7_(z —w) in the definition
of I. Therefore, the edge integral I is the value at 1 of a function f,345¢7 whose Mellin

transform is given by (14.3.1).
Moreover, the Mellin inversion formula is applicable, in the following form:

[ = frasser(1) = j Mrppsines (1) iy (1432)

where0 < s < % is any fixed number, and the integral is taken over all characters p (see
for the measure on ). To verify the applicability of the Mellin inversion formula, we verify
that M¢,,,,... (1s) is absolutely integrable as a function of n and invoke [Lemma 14.2.3] We
will check this absolute integrability in the nonarchimedean case, leaving the archimedean
cases to the reader; a similar check for F = R is carried out after (14.4.2).

Suppose, then, that the cardinality of the residue field of F equals q. Let O C F be the
ring of integers. The decomposition F* ~ O* x Z (after fixing a uniformizer) gives a
corresponding decomposition

f;zé;xs1.

As usual, we say that a character p of O* has conductor n if it is trivial on 14+ @™ O but not
on any larger subgroup of this form. The number of such characters equals q(1—2/q) for
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n = 1and q"(1 —1/q)? for n > 1; all that matters is that it is O(q™). On the other hand,
the formulas of |§ 2.2.3|imply that the the absolute value of the term

Y(xX1234567+ Hs )Y (X34567+ Ks )Y (a67+ 1s )Y (074 s )
Y(ot13a5671s )Y (Xas67hs )Y (67 1ts )Y (Hs)
from equals ¢~ when p has conductor n, where n is chosen strictly larger than
the conductor of any «; (this ensures that the conductor of any o, 1 involved in the fraction
above equals the conductor of p). Therefore, the integral of is absolutely bounded

by a constant multiple of _ ., q™ - q~*" and is absolutely convergent. This concludes
our justification of (14.3.2).

14.4. Relationship with classical 4F;. When F = R, we may use to relate the
tetrahedral symbol for the principal series with generalized hypergeometric functions.

For simplicity, we assume characters «;;34567+, etc. in the numerator of and
®134567, etc. in the denominator are of the forms |- |% and |- % (j = 1,...,4) respectively,
where

1
a; € E—FiR, bj € iR,

which is the case that is relevant to evaluating the tetrahedral symbol for unramified
characters with F = R. The general case can be analyzed similarly, where one adds
various signs; the answer itself will look different because the contours of integration
used later in the argument need to be chosen differently.

The Mellin transform over R* consists of two disjoint components M* and M~ (see
Definition 14.2.2). For a function f on R*, write f = f* 4+ f~, where f* is even and f~ is
odd, then we have

My =M/, =0.

Moreover, M, (resp. M) is twice the classical Mellin transform of f*1(o ) (resp. T~ |(0,00))-
As aresult, the sum M/ +M; is twice the classical Mellin transform of the function f|o ).

Therefore, to recover the value of f = fy334567 at 1, we can use the inverse Mellin
transform on the sum of

4
a]+s)
l}v b;)y(b; +5)

—.

and

li[ a) +s)
b
1Y i)y~ (b +5)

where vy~ (i) means y(u - sgn) for any quasi-character p.
We will now use the relations from (2.2.2)):

YE(s) T =T(s)(I S £17%) = (2n) °T(s)(i~® £1°),
YEGS) =TI — )T+ T = 205 'T(1 — ) (i " +£1'79)
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with I := 27i and i* := e'™/2, to rewrite M and M, in terms of I'functions and expo-
nential functions:

- e R : b b 14 41

_ . _ _ —bj—s bj+sy(;aj+s— s1—aj—s

Mf_le—Y(aj_bj) XHr(b)—i—S Fl—a;—s H TS £ AT (Y 1797
h =A :?lgi ’

Therefore, to compute M (s) + M; (s), we expand

2
A(B, +B_ Z Cri?™ = Y Cpd™ (14.4.1)
k=—4 k=—2
in powers of i*, where the Cys are various constants that are sums of products of
(2m)%—b~T1, i£95 i*P and y(a; — b;); for the last equality, it is easy to see that Cy = 0 for
all odd k because terms from B and from B_ cancel.
Now fix 0 < 0 < 3. Taking classical inverse Mellin transform, we have

2 o 4
C o+100 ke s
fx)= ) 4—72[‘1‘J LI+ )T — a5 — s)it*exvds (14.4.2)
k=—2 010 =1

where we take the straight line contour from —o — ico to —0 + ico. For simplicity, we will
restrict to x € R, since we will be most interested in the value at x = 1; in particular,
power functions are well-defined.

In order to justify the application of inverse Mellin transform, observe that the integral
is indeed absolutely convergent. To handle the asymptotics, it is convenient to rewrite,

using the relation I'(s)I'(1 —s) = ﬁ, the product of I'-functions as

ﬁ T - (14.4.3)
7 T(1=b; —s) sin(n(b; +5)) 4.

and use the fact ([TE51]) that the ratio I'(s+ a)/T'(s + b) is asymptotic to s*° so long as we
restrict the argument of s to be within (—m + 8, 7w — 8) for any fixed & > OE In particular,
when s is restricted to any vertical line, this same ratio is bounded by (1 + [t])?{@)=%(®)
where t is the imaginary part of s. Consequently, the integrand has the asymptotic
behavior [t|?, and so is absolutely convergent. Changing variables s — —s, k — —k, we
obtain

- C 2 Tt <4ks.s
- Z 4mJ _ Hr(bj—s)r(1—aj+s)1 x%ds. (14.4.4)
k=—2 —o—ioo 5
The integral
4
Giii(S:::::zgi‘ ) 7, [Tro; =or1 =g +sxds (14.45)

BThat is to say, s® (s 4+ a)/T(s + b) approaches 1 as s approaches infinity in this region.
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taken along certain admissible paths L, is known as a Meijer G-function. To understand
its connection with generalized hypergeometric functions, we need to review some of its
properties. The general theory of G-functions is rich, but what we need can be easily
derived from basic complex analysis.

For our choice of L, namely, the vertical contour with real part —o, all the poles of
I'(1 — aj + s) appears to the left of L and those of I'(b; — s) to the right. We then use
residues to evaluate the integral; but we will shift the contour in different ways according
to whether [x| is less than unity or greater than unity.

We first assume that |x| < 1. In this case, we shift the integral to the line where the real
part of x equals some large positive real ¢, where c is chosen (“pole avoidance”) so that its
distance from the series of points b;, b; + 1,... is at least 1/8 (which is possible because j
ranges from 1 to 4). In order to shift contours in this way, we consider the segment of our
integral from —o — iT to —o + iT and connect it to the line segment from ¢ —iT to c+il
by means of horizontal segments. The same reasoning that is given after (14.4.3) shows
that, as we take T — oo, the contribution of both horizontal segments Vamsh. Moreover,
if we then take ¢ — oo, the contribution of the right-hand segment vanishes too; here
we use both the fact that [x| < 1 and the uniformity of the asymptotic for (S+a in the
relevant region. The importance of the choice of c is to ensure that the term sin(7t(b; —s))
is bounded away from zero.

This shows that when [x| < 1, the integral is equal to the negative of the series
whose terms are the residues at all b; + n, in the sense that one converges absolutely if
and only if the other does. More explicitly, this series is

B i i (D" TT= T — a5+ b +1) [T, by —br—n)

n! x
n=0 h=1
4 4 00 4
H'*] (1 — + bh)n X
r 1—aq —|—bh F bh X )=
;H ] )1;{ ,;)H#hﬂ —bj+bp)an

Using the definition of 4F3, we then obtain

4
Gj{;j{(l‘:’ ’a“‘ ) ~ Y TIr0—a+ba) T (b5 —br)xb

h=1j=1 j#h

—a;,j=1,...,4
x 4F » 2 ‘ x |.
43( 1+bh— ],);éh )
The series defining these 4F3 converge absolutely when |x| < 1, and so the whole equality
is valid in the same domain.

Similarly, when |x| > 1, we shift the contour to the left, i.e. choose c to be very negative,
now incurring poles when s = ap, — 1 —n for n > 0. The resulting formula is

4 4
4.4 aly..., Qg o . el
G4,4<b1:...:b4lx>—z. r(1_ah+bJ)Hr(ah aJ)Xh
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1—ah—|—bj,j:1,...,4‘ 1
X4F3< 1—antapj#h |7 )"

This in particular also allows us to analytically continue the G-function for all x within
our chosen domain containing 1.

Finally, we go back to (I4.4.4). For the summand where k = 0, the integral involved
is exactly the Meijer G-function discussed above. For any k # 0, we may use the same
contour integral argument and the fact that i**™ = 1 for any n € Z, and see that (we use
the [x| < 1 formula here for example)

] —0+100 4
—J HF(bi —$)P(1 — aj + s)i**x*ds

4 o T4

[L-1 (0 —aj+br)nxm
— F(1—a;+br) | | T(b5 — br)i**Prx®n x J —
Z H j h H ; H#h“ —bj + bp)n 1!

Combining everything together, we have for [x| < 1

4
] 1 +bn—ayj=1,...,4
:_§ B F k) b ) ‘
Zh:1 h(X)4 3( «I_’_bh_b])J%h X))

where

2
= bhHF]—a]+bh []r;—bwn (Z C_Zki“kbh).

j#h k=—2

Recall by (14.4.1), we have

Z Copd™®» = A(B. +B_)ls—v,.
k=—2
But for B_, we have
4
B7|s:7bh — H(i*b]erh _ i’blibh)(ialibhiil _ 1"17(11+bh) — O
=1
because when j = h the factor

+—br+bn

i —ibn=bn — 0,

Therefore, only the term AB.; survives, and so we can simplify:
4

(271)% 05
Bh(X):_ZthH 7'[ J_b Hr Cl)+bh)( 19— bp— 1+11 a)+bh)
i vl
Hrb—b {7bitbn 4 {bi—bn)
j#h

4

2.2.2) ! v(aj; —by)
== _2xbn 2
H v(a; —b;)y(b; —bn)’
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where []’ denotes that we omit any evaluations of y at polar points; in the case above,
this means y(b; — by ) for j = h. As a result, we finally have for [x| < 1

by, / ( —bh) F 1+bh—aj,j=1,...,4)
ZX H o —bovie 57 ) ‘L T d b b r 1Y)

(14.4.6)
Similarly, for [x| > 1, we have
ah+bj,j:1,...,4‘ 1
ZAh 4F3( ]—Clh+0.j,]'7éh x )
where
2
_Xah 1Hr 1 —(lh+b Hr ah_a] (Z C2k14k(ah])> ,
j#h k=—2
and we may snnphfy it as
i _ (an — b;) l—an4b,j=1,....4
_ Y(Qn — bj — Qh ) = byeeoy -1
f(x) =y xon! ) F( »r ’x )
}; H v(an — aj)y(a; — by) e l—an+a;,j#h
(14.4.7)

14.5. The tetrahedral symbol as a convolution of y-factors, for general F. Return for a
moment to the case of general F. We shall prove the formula [Proposition 7.3.1} which we
recall here:

{ﬂ}—v—1J Y3+ Aou)y(l—eB'@u)
- P
. VY5, A®BT)

for four-element sets of characters A, B.
We shall apply the results of the former subsection with the following o;

dp

01 = X12X1Xis» X2 = X12X13Xia > X3 = XarX2aXzs > 4 = Xa2XasXa1
05 = Xa2Xa1Xaz » %6 = Xa1Xa3Xan » 7 = X3aX31X32 -
We compute the following combinations:
X1234567 = X12X31X41, X34567 = X21X41X31, K467 = X43X31X23) X7 = X34X31X23)

X134567 = X§1) X4567 = X42X41X31X23) K7 = X41X31X24X23-
We now rewrite (14.3.1) in the form

}_w( +5,A’ @ p)
v(s,B @ p)
where we are to integrate over characters p and a fixed real s between 0 and 1; and

[v(x24 )y (o )y (eas )y (7)) , (145.1)

Al = {X1234567, X34567, Xa67, X7} = X21Xa1X31 & {X%m 1, Xa3X23X12X14) X34X23X12X 14}

B' = {eg 34567y X4567y K67, 1} = X§1 & {1>X42X41X13X23> X41X13X24X23) X%s}-
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Now, (14.5.1), when integrated over , is invariant under a common translation of A’, B'.
Doing such translating A’ and B’ both by X3, we arrive at:

A=x3Q0A" = (X41 ® {X125 le}) U (X23 ® {X43, X34}))
B :=X13 ® B’ = {Xa1, X13} U (X41X23 ® {Xa2, X24}) .

Using the fact that y(p, )y(p=') = u(—1), we can replace the inverse of Y(s,B ® u) by
v(1 —s,B7' @ u='). Consequently we rewrite the edge integral in ( as the inverse
Mellin transform of

Y3 +s,A@uy(l—s,B'ou")
u— )

evaluated at 1, where S* is modified from S~ by including the eigenspaces of eigenvalues
x12x13x1_4], x21x2_31 X4, x4_11 X42X43, x31x3_21 Xaq (cf. instead of their inverses; these arise
from the y(az ), ...,y (7, ) factors. To conclude we note that A ® B~ is exactly equal to
S* (the underlined ones below are those in S$* but not S7):

X1234567 X34567 X467 X7
-1 -1 -1 -1 1 -1 -1 —1 -1
Xi34567 | X12X13X14  X12 X13X14  X31 X32 X3z X31 X32 X34
. 1 -1 1 -1 1
X4567 | X21 X23 X2 X21X23 X24 X41 X42 X43  Xa1 Xa2 Xa3 (14.5.2)

O | Xo'Xos Xaa' X21Xzs Xaa© Xan XazXes  Xa1 Xa2Xas
1 X12X13 X1a Xi2 X13 X1z X31X3:2 Xaa  X31X32 X34

14.6. The tetrahedral symbol for the case F = R. The F = R case is the most interesting
when combined with our discussion in We assume for simplicity that xi; (ij € O)
is of the form |-/ for J;; € iR such that Ji; + J;; = 0. Using (.3.I), we also write
J1 = J12,J2 = Ja1, and so on. Then with a;,b; (i =1,...,4) as in[§ 14.4, we have

1

1 1 1
a; :]uzﬁ‘f’i» 02:]1723+§> 03:]24@+§> Qg = 1246+2>
b1 = Jaa, b2 = Ja336) b3 = J23s6, by =0,

where J;,3 means J; — J; — J3, and so on. Plugging in the formula (14.4.6) and simplifying
using the properties of y and L-factors from [§ 2 we have

(m L ;)ST) 4F3(]H23+2)Jﬂ23+2)]246+ 2)]246+ ‘])
Y (Jz336) (12356) (J33) Josse + 15 J2336 + 1, J22 + 1

B L(3,S3 ]1]36"‘%)]1]56"—%)]345"‘%)]345"‘% 1

Y (J23s8) (]55 ]235@ Jazze + 1,35 + 1, J2336 + 1

L(3,S3 (]5@"‘%,Iﬂ56+%>1345+%>]345+% 1)

- F
Y(Ja336)Y (]ss (J2338) 4 ¥ Jazse + 1y )55 + 1, J23s6 + 1
L(3,S Jizs+ 3, J12s + 30 )46 + 3> J236 + 3 1

2)
Jaz + 1, J3356 + 1, 2336 + 1

F
Y(J22)y (]2356 (J2356) 4 ’




THE TETRAHEDRAL (OR 6j) SYMBOL 85

where S} is obtained from (14.5.2) by inverting the i-th row. Note also that the first row
of parameters in each 4F3; corresponds precisely to the respective row in (14.5.2) up to a
universal inversion and half twist.

Similarly, plugging in (14.4.7)), we also have

1 L(3,S7) Jiza + 3, Jis6 + 32 Jise + 35 Jiza + 3
{ﬁ} L —,S =4 2 F ( 123 27)156 27)156 22)123 2 1)
<2 ) YJi)v(J1346)Y (11134@@)4 ¥ Jit + 1, Jsas + 15 Jiaa + 1 ‘
n (z>33’) 4F3(]n23+%>]n5@+%>1n56+%»Inis‘F% ‘ 1)
YJ17Y U7346)Y U326 ) Jin + 15 J1336 + 15 J1ae + 1
n (% S3/) 4F3<]246+%)]§4§+%>]§45 2>]246+ ’1>
Y(Ji336)Y (J1336) Y (J22) Jizas + 1, Ji3a5 + 1, Jas + 1

L(3Si/) 4F3<JMG"‘%a]iﬁ"’%)hzﬂs"’%)h%"’% ) 1)
Y Ji246)Y (J1346) v (Jas) Joaag + 1y Jizae + 1, Jag + 1
where S}, is obtained from by inverting the i-th column, and the first row of
parameters in each 4F3 corresponds to the respective column in up to a universal
inversion and half twist.

15. SOME PROOF SKETCHES FOR[§ 9|

In this section, we provide sketches of proofs of some statements in§ 9| We are confident
that they turn into real proofs once proper technical care is given, but nevertheless we
have not done it. Also, we do in fact wonder if any human being will read this.

15.1. A sketch of the proof of [Proposition 9.1.1, The following proof is rigorous — but
can also be written more easily, as in the traditional theory of the tetrahedral symbol —
when R compact. However, we have chosen to write the proof in a way should be valid in
the general case. We say “should be” because there are details we have not tried to fill in:
we expect them to be routine but rather tedious and notationally cumbersome to handle.
Let us pre-emptively confess to these sins:

e We shall not distinguish between the space of smooth vectors in an R-representation
and its Hilbert completion; similarly we will not clearly distinguish between maps
that are defined on the smooth part and on the Hilbert completion.

e We will be freely using the theory of unitary decomposition. In particular, this
theory handles various set- and measure-theoretic issues that we will not even
allude to.

As a typical example, let f(7r) be a rule that assigns to each class [7t] in the unitary
dual of R an element of “the” corresponding unitary representation 7. In this
situation is a reasonable way to talk about such fs, and there is a reasonable way
to talk about them being measurable, and taking the inner products of two such;
but all this we will omit.

e Many of the functions below are defined in the sense of measure theory, i.e., off
zero measure sets; again, we will ignore this entirely in our language.
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e We shall not justify absolute convergence of expressions below. This is the only sin
that we think is not venial, because it requires estimates that we did not carry out.

Suppose T, 0 are tempered representations, upon which we fix self-duality pairings.
For any tempered representation T € Py, on which we we also fix a self-duality pairing,
we may normalize an invariant functional A on m® o ® T according to We dualize
it to obtain a map m ® o — T. (The first sin!)

Recall that there are real structures 7g, O, T on which the duality
structures are inner products. We then define an inner product on 7, o, T by complex-
linear extension.

Lemma 15.1.1. The induced map
mn®o — JTdT

extends to an isometry of Hilbert spaces upon completing the left-hand side. On the right, the
measure is Plancherel measure; and we integrate over the subset of Po with the property that there
is a nontrivial invariant functional on T® 0 ® T.

Proof. We prove the corresponding statement for real Hilbert spaces, from which the claim
follows by complex-linear extension. This amounts to the following assertion for v, v’ € mg
and w,w’ € og:

(v, v )(w,w') = JdTL . Z (hv,v') (hw,w’) (he, e)dh.
€ eceB.

where B is an orthonormal basis for g, which is a consequence of the Plancherel formula
(9.1.1) applied to the function h — (hv,v’)(hw,w’). |

We now put ourselves in the situation of having fixed self-duality pairings on all
the m;; we fix inner products as above. In what follows, T, T3, T34 should be regarded as
fixed, but the remaining 7ts will be “varying” — that is, we will not explicitly include in
the notation dependence on 715, 703, Tt34.

Applying the lemma (to various choices of 7, 0), we find isometries:

Tl & T3 = J

T4

Thy — T2 & Tz & Tl3g = J

Tt2q

Ty & Tlzq =~ J T14. (1511)

7114, 7024

Here, ~ means an isometry of Hilbert spaces. The range of integration on the right hand
side consists of those 7114, 74 for which the representation both 7 ® 73 and 4 ® 7134
admit nonzero invariant maps to 4. For a given 714 let us call this set of 7,4 by the name
A(my4) (it depends on the other 7ts too, but we are regarding them as fixed).

We get a similar decomposition with 24 replaced by 13:

Tl & Tl3q J'

713

T3 — T2 & Tz & Tl J

12

Ty & Tz =~ J 4. (1512)

7T14,7113

where the range of integration consists of pairs 714, 713 with the property that both 71,3 7134
and 714 ® 7y, admit maps to my3. For a given 4 let us call this set of 33 by the name
B(7m14) (it depends on the other 7ts too, but we are regarding them as fixed).
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Therefore, there is an isometry

J Tl =~ J Tl14, (1513)
TT14,7T24 7T14,7113

where the ranges of integration are as specified above. Being equivariant for the group
action this map necessarily has a rather special form: for each 71,4 we must have an isometry

LZ(A(WM)) = I—Z(B(ﬂm))a

which is necessarily given by a scalar-valued kernel function K™+ (714, 7113) on the product
A(ms) x B(7ma); explicitly, the isometry of |(15.1.3) necessarily has the form

(g, T1a) > j K7 (1, 7113 (7ot e10), (15.1.4)

Tt24

where the function f is vector-valued: it takes inputs 714 and 7,4 and returns a vector in
the space of my4; on the right, the input parameters are 714 and 7113 with the output a vector
in 7ty4.

In what follows, we write for typical vectors

X € T2, Y € T3y Z € T34, W € Tly1.

We will denote the image of x ® y ® z on the right hand side of (I5.1.1) by E74 (x @ y ® z);
it is an element of 7144 that depends also on the choice of 7,4. Similarly we denote its image

on the right hand side of (I5.1.2) by E™(x ® y ® z). Thus the Es are linear maps

713

ETu BN 7y @ Tz ® Tlay — Mg

Tl4) —T013 "

Let x,y, z vary through orthonormal bases of K-finite vectors for the respective represen-
tations. Then x ® y ® z varies through an orthonormal basis for 711, ® 73 ® 7134. Therefore,
Eft(x ® y ® z) and Ef#(x ® y ® z), considered as my4-valued functions of (714, 713) or
(7T14, T24), form orthonormal bases for the two Hilbert spaces appearing on correspond-
ing sides of (15.1.3). The unitary transformation sending one basis to the other sends a

function f(7rp4, 14), taking values in 7144, to
f': (s, ma) — Y EME(x@y @ z)J (F(tas, 71,), Erit (X @y © 2)).
X,Y,Z Tl24, 701y

Let f(7t24, T14), f'(7113, 714) be arbitrary, but “real-valued,” i.e. valued in a fixed real form
Tha,r; this permits us to ignore complex conjugates in inner products. Compare the above
equation with (15.1.4) to conclude

J K™ (7tpq, 7013 ) (f (7024, 114 ), ' (7013, T014) )
= J D (f(rm, ) @ f (T3, ), Er (x @y @ 2) @ ETE (x @y @ 2)).

!
24,7114,T0y x 4,z

Since f is arbitrary, the same equality still holds without integrating over 7t,4; s0
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J K™ (7024, 7013 ) (F (7024, T014), ' (7013, T014))
TT14

:J S (70, ) @ (15, o) ER (x 0y ©2) @ B (x @y @ 2)). (15.1.5)
014,701, X,Y,Z

Previously we fixed 7115, 7123, 7134. We now additionally fix 7113 and 714, so that we are now
regarding all the m; for {ij} # {14} as fixed, and will not include in the notation dependence
on these representations. Having fixed these, we put

K74 = K™ (7p4, T013).

Again, here, we have a measure-theoretic issue, since K is defined only off a set of measure
zero; in actuality, all the statements hold almost everywhere, and are to be extended by
continuity.

Abridge 714 to 7t and 71y, to 7', switch the letters f, f’ for nicer typography, and rewrite

K”-J (f(m), f'(m)) :J Y (F(n)@f(n),EL, (x0y©z) @ Ef (x®y ®2)). (15.1.6)

Tt24
va )Z’

Let us reinterpret the right hand side as follows. Consider the representation

c=(Memn® ® Tty & Tl
ijeE—{14}

i.e., similar to TTg but now taking m4 = 7,714 = 7/, that is, two previously isomorphic
copies of 7114 are taken to be distinct representations. We can define as before AM* in the
dual of TT; by tensoring the invariant trilinear functionals on triples of representations
indexed by edges sharing a common vertex. Note that both T and A"* depend on both
mand 7', but to simplify the notation we will not explicitly denote this.

Let IT§ 1, be the same expression integrated over 7,7, and define A in the dual of
TTG big by similarly integrating AM*, where, in both cases, all integrals are taken with
respect to Plancherel measure in both 7w and 7’

* _ * AH Hx*
bos= | Mo A= A
7T, 7! 7T, 70’

Consider the expression )} |, x ® x € 7, ® 7y, and its analogues for 7,3 and so on; let
A be obtained by tensoring together all these expressions for all ij € E — {14}. Finally, let
Y=[f®[fe [, . n ®mn Then we may rewrite (15.1.6) as a pairing inside TTg ,,:

(15.1.7)

7,7’

<Y ® A) /N\H>l‘[*

G,big .

To proceed we must observe an alternative way of writing the tetrahedral symbol.

Lemma 15.1.2. Notation as above, we have

(Yo A AT = J (f(70), ' (7o) )/{TT} (15.1.8)

s

where {1} takes as arguments the fixed m; for ij # 14, and T4 = .
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Given this, it is easy to finish the proof: Starting at (15.1.6) we find

JKWHMJWM>=@E!9=J{WHM%WMM

and, this being valid for all choices of f, f’, we see that {IT} coincides with K™, which is the
kernel of an isometric isomorphism of L?(A(n)) and L?(B(7)), as desired.

Proof of |Lemma 15.1.2 First let us prove an easier-to-grasp version. Suppose that we can
find a functional AP on g such that

J 5 AP = AP, (15.1.9)
d5eDNH

where we can think of AP as an un-averaging of AP. Then we have, simply,
{1} = (A™,AP), (15.1.10)

where the left hand side means lim; A™ (v;) when AP = lim; (vi, —). To prove (15.1.10) we
choose vy € TTg with the property that A" (vy) = 1 and successively rewrite {IT} via

A" ) = | AP () = | AP ()
heDNH\H heH
:J lim(vi, hvy) = limJ (vi, hvy) = Lim A (vy).
H 1 1 H 1

Write u(7t) = (f(m), (7)), so that the desired (I5.1.8) can be written as [ _w(m){TT} =
(AM,Y ® A). Note that this is a version of (I5.1.10) with TTg replaced by TTG big and with
Y ® A playing the role of AP, and we use similar reasoning to prove it. Note, first of all,

the following analogue of (15.1.9):

s

J 5 (YRA) = J u(m)AP. (15.1.11)
deDNH

This is a consequence of the Plancherel formula, which gives the analogue of the “Schur
orthogonality relations” in the current context. The point is that the averaged vector
Jhex N+ Y represents, on Lm, 7t ® ', the functional that corresponds to restricting to the
diagonal, contracting, and integrating against (f, f’) times the Plancherel measure. Now,
to prove we “do the same thing in a family,” proceeding as before but replacing vy
now by a (7, t’')-dependent family of vectors vy (7, ') € 1§, chosen to have the property
that AH(vyy) = 1 for all 7t, 7t; write vy for the integrated vector [ vy (7, 7t') € IT*G,big. The
result is

J

ijﬂARmmmmnzjummn
DAH\H J7x

T

G,big

J (Y ® A, hv)n
heH

This finishes the proof. [ |
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15.2. Relationship between geometric representation theory and/Theorem 5.2.1} a sketch.
We follow notation as in [§ 9.7, and will write f = F4((t)) D 0 = F4[[t]] for the analogues
of F, O over F,. We write for this argument

x=(1—q?)=L2)".

Let us consider, as in (8.1.1), integration over (H N D)\H as defining an averaging
intertwiner Av from X = D\G to Y = H\G. We will use the normalized version

Lout = “3 AV)

which comes from the fact that it is geometrically natural to use the “point-counting”
measure where PGL;(0) has mass 1 — 1/g?, coming from the point count over F,. We
regard I, an interwiner from functions on Y;/G, to X;/G,. We will give these spaces
X;/G, and Y};/G, also the point-counting measures; for example the measure of X, /G, is
then equal to «~°, whereas the measure of X, /G, is equal to o™*.

Let Dy be a maximal compact subgroup of the dual group of D, which we regard as
embedded in G in the diagonal fashion. For any ¢ € D, let @ be the corresponding
normalized spherical function on Y;/G,, whose value at the identity equals 1; and let

@% be the normalized spherical function on X;/G,; its value at the identity coset equals,

T
instead, o8/ LL((ﬁ—’;)), see (6.2.1). By definition,
Lut@y = {7,

where TT = TI(0) is the unramified representation with parameter o. By the Plancherel
formula, we get

1

Iy, = J (v oYy, 6, 0) - al2L(1, §)t (15.2.1)
oeDy

and applying I, and pairing we find

(Txoy LautTy,) = J o{TT} (T, @3)v, G0 (Txr P2V X, 60 ' 2/ L(T, 8)
B 10X (1)

— o3 JD () L(%,S).

where the exponent —3 arises from 3 —10—8+12. There is a similar formula with a Hecke
operator inserted.
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Let us compare this with what we get from the conjecture enunciated around (9.7.1).
Computing Hom-spaces H and then passing to Frobenius trace, we find

(Ix,, Lutly,) = Tr(q_%o, k[P]D) = J character of q*%a on k[P]. (15.2.2)
GDO

Here D, is a maximal compact subgroup of D, and the q~? arises from interpretation the
effect of shearing. Again, there is a corresponding formula with a Hecke operator inserted.
Comparing and (15.2.2)), and moreover the versions with Hecke modifications, one
can identify the integrands, and not merely the integrals; so we find

{11} - \/ = « - character of k[P] at q ~ig

which agrees with [Theorem 5 2.1}
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